首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, dielectric materials with excellent mechanical and hydrophobic properties are desired for use in the integrated circuits (ICs). For this reason, low dielectric constant fluorographene/polyimide (FG/PI) composite films were prepared by a facile solution blending method, suggesting that the mechanical, electrical, hydrophobic and thermal properties were significantly enhanced in the presence of FG. With addition of 1 wt% FG, the tensile strength, Young’s modulus and elongation at break were dramatically increased by 139%, 33% and 18% respectively when compared with pure PI film. Furthermore, composite films exhibit superior hydrophobic and thermal stability performance. Especially, the FG/PI film with 0.5 wt% of FG possessing a low dielectric constant of 2.48 and a good electrical insulativity that is lower than 10−14 S m−1. Therefore, by their excellent performance, FG/PI hybrid films represent suitable candidate solutions with applications in the microelectronics and aerospace industries.  相似文献   

2.
Polyimide (PI) composites containing one-dimensional SiC nanowires grown on two-dimensional graphene sheets (1D–2D SiCNWs-GSs) hybrid fillers were successfully prepared. The PI/SiCNWs-GSs composites synchronously exhibited high thermal conductivity and retained electrical insulation. Moreover, the heat conducting properties of PI/SiCNWs-GSs films present well reproducibility within the temperature range from 25 to 175 °C. The maximum value of thermal conductivity of PI composite is 0.577 W/mK with 7 wt% fillers loading, increased by 138% in comparison with that of the neat PI. The 1D SiC nanowires grown on the GSs surface prevent the GSs contacting with each other in the PI matrix to retain electrical insulation of PI composites. In addition, the storage modulus and Young’s modulus of PI composites are remarkably improved in comparison with that of the neat PI.  相似文献   

3.
In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 °C was carried out and compared with the behavior at room temperature and 48 °C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5–4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films.  相似文献   

4.
In this work, we reported a simple method to fabricate novel free-standing stiff carbon-based composite films with excellent mechanical properties and superhydrophobic behaviors. The free-standing stiff carbon composite films based on reduced graphene oxide/glassy carbon (rGO/GC) were prepared by the combination of in-situ polymerization and carbonization process. The obtained composite films exhibited excellent mechanical properties by the addition of rGO nanosheets. It was found that incorporating 0.5 wt.% of rGO sheets in GC precursors resulted in enhancements of 99% in strength (202.6 MPa) and 184% in modulus (33.8 GPa), respectively. More interestingly, carbon nanoarrays were uniformly grown on the surface of composite films by the incorporation of rGO sheets. Superhydrophobic surfaces of carbon films were subsequently formed through functionalizing carbon nanoarrays with Trichloro(1H, 1H, 2H, 2H-perfluorodecyl)silane. Contact angle (CA) analysis suggested that superhydrophobic surfaces with a CA as high as 155° could be formed through optimizing the fabrication process.  相似文献   

5.
Due to the growing needs of thermal management in modern electronics, polyimide-based (PI) composites are increasingly demanded in thermal interface materials (TIMs). Graphene woven fabrics (GWFs) with a mesh structure have been prepared by chemical vapor deposition and used as thermally conductive filler. With the incorporation of 10-layer GWFs laminates (approximate 12 wt%), the in-plane thermal conductivity of GWFs/PI composite films achieves 3.73 W/mK, with a thermal conductivity enhancement of 1418% compared to neat PI. However, the out-of-plane thermal conductivity of the composites is only 0.41 W/mK. The in-plane thermal conductivity exceeds its out-of plane counterpart by over 9 times, indicating a highly anisotropic thermal conduction of GWFs/PI composites. The thermal anisotropy and the enhanced in-plane thermal conductivity can be attributed to the layer-by-layer stacked GWFs network in PI matrix. Thus, the GWFs-reinforced polyimide films are promising for use as an efficient heat spreader for electronic cooling applications.  相似文献   

6.
Au–Chi nanocomposites with different AuNPs additions were investigated. The dispersion of AuNPs in polymer matrix was observed using s-SNOM analysis. The dielectric properties as a function of temperature show two relaxation processes: (1) a primary α-relaxation process, at low temperatures; (2) a second low frequency relaxation at temperatures between 70 °C and 150 °C identified as the σ-relaxation often associated with short range ion mobility. In nanocomposite films, the σ-relaxation process overcomes the α-relaxation process so that the glass transition is no longer detected. The dielectric nonlinear properties (tunability) shown an increase of dipolar moment with AuNPs additions and this results are in good correlation with matrix modification in FTIR investigation.  相似文献   

7.
This work prepares (3-aminopropyl) trimethoxysilane (APTMS)-functionalized reduced graphene oxide (APTMS-rGO)/polyimide (PI) composite (APTMS-rGO/PI) through in-situ polymerization. NH2-functionalized rGO coupled by APTMS demonstrates the good reinforced efficiency in mechanical and thermal properties, which is ascribed to the covalent-functionalized PI matrix by APTMS-rGO sheets. The uniform dispersion of APTMS-rGO increases the glass transition temperature (Tg) and the thermal decomposition temperature (Td), exhibiting 21.7 °C and 44 °C improvements, respectively. The tensile strength of the composites with 0.3 wt% APTMS-rGO is 31% higher than that of neat PI, and Young’s modulus is 35% higher than that of neat PI. Raman spectroscopy show the obvious G band shift, and also clearly demonstrates the enhanced interfacial interaction between rGO nanofillers and PI matrix. The high mechanical property of the APTMS-rGO/PI composites is attributed to the covalent functionalized GO by NH2 groups and its good dispersion in comparison with GO.  相似文献   

8.
Titanium oxide TiO2/epoxy and TiO2 with detonation nano-diamond (DND)/epoxy nanocomposites were prepared by using ultrasonication method. TiO2 and DND particles as reinforcement species and epoxy as matrix were used to produce nanocomposites. The addition of DND particles into TiO2/epoxy composite improved the dielectric and mechanical properties of nanocomposites in significant amount. The dielectric properties of TiO2-DND/epoxy nanocomposite demonstrated increase in permittivity and conductivity after addition of the DND particles. The maximum and minimum reflection losses of TiO2-DND/epoxy nanocomposite for 0.6 and 0.2 wt% DND loading were detected at ?14.5 and ?1.3 dB, respectively. The flexural and tensile strength of TiO2-DND/epoxy nanocomposites with the addition of 0.4 wt% DNDs were enhanced to 220% and 223%, respectively. Additionally, the energy to break and percent break strain were 3.9 J and 3.86, respectively for 0.4 wt% DND loading in TiO2-DND/epoxy nanocomposite. Therefore, the present work findings claim that DND particles are well suitable to enrich the dispersion of TiO2 nanoparticles in epoxy matrix, which develops a strong load transfer interface between the nanoparticles and epoxy matrix and consequently leads to superior properties.  相似文献   

9.
A simple synthetic method for placing a mesoporous silica coating on multi-wall carbon nanotubes (CNTs@MS) was developed to improve the surface compatibility with regard to a polar epoxy matrix. In addition, the mesoporous silica shell with silanol groups on the CNTs provides a platform to attach silane molecules (e.g. 3-glycidoxypropyltrimethoxysilane, GPTMS) that enable the CNTs@MS to be incorporated into the epoxy matrix at a content of up to 20 wt.%. The viscosities of the CNTs@MS- and GPTMS-modified-CNTs@MS–epoxy composites are much lower than that of the CNTs–epoxy, and then the voids in the GPTMS-modified-CNTs@MS–epoxy composites are most significantly reduced. The effects of the CNTs@MS and GPTMS-modified CNTs@MS on the mechanical and thermal properties of the epoxy composite are investigated. The results show that the GPTMS-modified CNTs@MS improved the filler–epoxy matrix interaction, and has better compatibility in epoxy than the CNTs@MS. As the surface compatibility and interaction strength increase in the epoxy matrix, the enhancement in storage modulus, thermal conductivity and reduction in the coefficient of thermal expansion are in the following order: GPTMS-modified CNTs@MS > CNTs@MS  CNTs.  相似文献   

10.
In this work, the effects of montmorillonite (MMT) dispersion and electron beam irradiation on intercalation and flammability-thermal behaviours of alumina trihydrate (ATH) added low density polyethylene and ethylene vinyl acetate (LDPE–EVA) blends were investigated. MMT and ATH added LDPE–EVA blends were compounded using Brabender mixer and compression moulded into sheets. The samples sheets were electron beam irradiated in the dosage range of 0 to 250 kGy. The dispersion and intercalation of nano-MMT in LDPE–EVA matrix were investigated through X-ray diffraction (XRD) analysis. The d-spacing measurements revealed that the addition of nano-MMT has effectively intercalated into polymer matrix and this has enhanced the compatibility of ATH particles and LDPE–EVA matrix. Limiting oxygen index test (LOI) revealed that the incorporation of MMT into ATH added LDPE–EVA blends as improved the flame retardancy up to 26.5 LOI%. Besides, the application of electron beam irradiation were also improved the flame retardancy of the blends by increasing the LOI% for about 2% compared to non-irradiated samples. The application of irradiation dosage up to 250 kGy has rapidly improved the thermal stability of blends by delaying decomposition temperature and also promoting formation of char. The increasing of MMT loading level and irradiation dosage has effectively enhanced tensile strength and Young’s modulus by intercalating polymer matrix into interlayer galleries of MMT particles. Beside, the formation of crosslinking networks in polymer matrix also could further enhance the tensile strength and Young’s modulus. The intercalation effect of MMT particles and formation of crosslinking networks in polymer matrix could improve the thermal and mechanical properties. Consequently, this study has demonstrated that addition of MMT and electron beam irradiation into ATH added LDPE–EVA blends could produce better flammability, thermal and physical properties of ATH added LDPE–EVA blends.  相似文献   

11.
Novel free-standing stiff all carbon films based on multi-walled carbon nanotube (MWNT)/glassy carbon (GC) with excellent performance were fabricated. MWNTs, as excellent reinforcing materials, were successfully dispersed in polyimide (PI) matrix by in situ polymerization. The resultant MWNT/PI nanocomoposite films were used as precursors and underwent carbonization process. As a result, all carbon constituted MWNT/GC composite films were obtained. Mechanical results showed the maximum 3-point bending strength and modulus reached 575.5 MPa and 7.7 GPa respectively, improved by 54% and 78% compared to those of neat GC films. This method is simple, and the free-standing composite films can be prepared in large scales, which hold great potential in many applications.  相似文献   

12.
Aramid fibers reinforced silica aerogel composites (AF/aerogels) for thermal insulation were prepared successfully under ambient pressure drying. The microstructure showed that the aramid fibers were inlaid in the aerogel matrix, acting as the supporting skeletons, to strengthen the aerogel matrix. FTIR revealed AF/aerogels was physical combination between aramid fibers and aerogel matrix without chemical bonds. The as prepared AF/aerogels possessed extremely low thermal conductivity of 0.0227 ± 0.0007 W m−1 K−1 with the fiber content ranging from 1.5% to 6.6%. Due to the softness, low density and remarkable mechanical strength of aramid fibers and the layered structure of the fiber distribution, the AF/aerogels presented nice elasticity and flexibility. TG–DSC indicated the thermal stability reaching approximately 290 °C, can meet the general usage conditions, which was mainly depended on the pure silica aerogels. From mentioned above, AF/aerogels present huge application prospects in heat preservation field, especially in piping insulation.  相似文献   

13.
Aligned Fe3O4@Ag-nanowire (Ag-NW)/poly(vinyl alcohol) (PVA) nanocomposite films are prepared via a magnetic field-assisted method under a low magnetic field (B < 0.1 T) induction. The effects of the mass ratio (MR) of Fe3O4 to Ag-NWs and the Ag-NW content are systematically studied on the composite electrical conductivity (EC). The preferential alignment of Ag-NWs brings about a significant increase in the EC of the oriented composite in the parallel direction along the magnetic field. The optimal MR is determined to be equal to 0.15 at which the random composite has a good EC meanwhile the oriented composite shows a good response to the applied magnetic field. The oriented composite with the 20 wt% Ag-NWs shows a high EC anisotropy of ca. 6.6 and a very high EC of 4500 S/cm via the external magnetic field. In addition, the introduction of Ag-NWs leads to an obvious improvement in the thermal stability of PVA composites.  相似文献   

14.
Nanocomposites of polysulfone (PSF)-graphene oxide (GO) were prepared by classical phase inversion method. The structural and surface features and the mechanical and thermal performances of the prepared materials were investigated in detail. TEM and X-ray diffraction analysis indicated a good compatibility and excellent dispersability with PSF matrix for the low GO content (0.25, 0.5 and 1 wt.%) composites. It was observed that GO dispersion was reasonably homogeneous for the composite with 2 wt.% GO. The mechanical properties of the prepared materials were found to be greatly enhanced by the addition of GO for some compositions. The thermogravimetrical investigation demonstrated considerable improvements in thermal stability for the composite with low GO content. This novel material offers a feasible candidate for practical membrane application.  相似文献   

15.
Cellulose nanofibers–reinforced PVA biocomposites were prepared from peanut shell by chemical–mechanical treatments and impregnation method. The composite films were optically transparent and flexible, showed high mechanical and thermal properties. FE-SEM images showed that the isolated fibrous fragments had highly uniform diameters in the range of 15–50 nm and formed fine network structure, which is a guarantee of the transparency of biocomposites. Compared to that of pure PVA resin, the modulus and tensile strength of prepared nanocomposites increased from 0.6 GPa to 6.0 GPa and from 31 MPa to 125 MPa respectively with the fiber content as high as 80 wt%, while the light transmission of the composite only decreased 7% at a 600 nm wavelength. Furthermore, the composites exhibited excellent thermal properties with CTE as low as 19.1 ppm/K. These favorable properties indicated the high reinforcing efficiency of the cellulose nanofibers isolated from peanut shell in PVA composites.  相似文献   

16.
This paper investigates the self-healing repair of cracks in an epoxy/nanoclay nanocomposite using mendable poly[ethylene-co-methacrylic acid] (EMAA) particles. The effects of two different concentrations of EMAA agent on the self-healing efficiency were measured using single edge notch bar (SENB) testing. Inclusion of EMAA particles into the nanocomposite results an increase in the fracture strength and strain of the SENB specimens. Damaged SENBs were healed at 150 °C for 30 min to achieve up to 63% recovery in critical stress intensity and over 85% recovery in sustainable peak load. Also, X-ray diffraction (XRD) analysis and tensile test used in order to examine the nanocomposite structure and investigate the effects of EMAA inclusion on the nanocomposite mechanical properties. The pressure delivery mechanism of the healing agent is shown by scanning electron microscopy (SEM) images. It seems EMAA can be used as an effective self-healing agent for epoxy/nanoclay nanocomposites.  相似文献   

17.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites.  相似文献   

18.
Highly aligned polyimide (PI) and PI nanocomposite fibers containing carbon nanotubes (CNTs) were produced by electrospinning. Scanning electron microscopy showed the electrospun nanofibers were uniform and almost free of defects. Transmission electron microscopy indicated that the CNTs were finely dispersed and highly oriented along the CNT/PI nanofiber axis at a relatively low concentration. The as-prepared well-aligned electrospun nanofibers were then directly used as homogeneity reinforcement to enhance the tensile strength and toughness of PI films. The neat PI nanofiber reinforced PI films showed good transparency, decreased bulk density and significantly improved mechanical properties. Compared with neat PI film prepared by solution casting, the tensile strength and elongation at break for the PI film reinforced with 2 wt.% CNT/PI nanofibers were remarkably increased by 138% and 104%, respectively. The significant increases in the overall mechanical properties of the nanofibers reinforced polyimide films can be ascribed to good compatibility between the electrospun nanofibers and the matrix as well as high nanofiber orientation in the matrix. Our study demonstrates a good example for fabricating high performance and high toughness polyimide nanocomposites by using this facile homogeneity self-reinforcement method.  相似文献   

19.
Films of polyvinylpyrrolidone (PVP)-stabilized silver nanowire (AgNW)/thermoplastic polyurethane (TPU) elastomer nanocomposites were fabricated and characterized. With increasing loading levels of AgNW, the transparency of the nanocomposite films was reduced, but their crystallization temperatures increased, suggesting that AgNW could serve as crystallization nucleating agents. The addition of AgNW also enhanced both the Young’s moduli and storage moduli of the nanocomposite films, but caused a reduction in their strain-at-break (from 536% to 304% with 1.5 vol.% AgNW) and ultimate strength (from 12.7 to 9.8 MPa with 1.5 vol.% AgNW). The specific toughness was the highest for nanocomposites with AgNW loading levels of 0.03 vol.% and 0.05 vol.%. In addition, the dielectric constant of the nanocomposite films with 1.5 vol.% AgNW was 9 times higher than that of pure TPU at 1 kHz, while the dielectric loss of all nanocomposite films studied was less than 0.2. Thus, AgNW/TPU elastomer nanocomposites with varying mechanical, dielectric, and thermal properties can be engineered by adding a small amount of AgNW. These nanocomposites can potentially be used for a wide range of applications including dielectric materials.  相似文献   

20.
A metal matrix composite has been obtained by a novel synthesis route, reacting Al3Ti and graphite at 1000 °C for about 1 min after ball-milling and compaction. The resulting composite is made of an aluminium matrix reinforced by nanometer sized TiC particles (average diameter 70 nm). The average TiC/Al ratio is 34.6 wt.% (22.3 vol.%). The microstructure consists of an intimate mixture of two domains, an unreinforced domain made of the Al solid solution with a low TiC reinforcement content, and a reinforced domain. This composite exhibits uncommon mechanical properties with regard to previous micrometer sized Al–TiC composites and to its high reinforcement volume fraction, with a Young’s modulus of ∼110 GPa, an ultimate tensile strength of about 500 MPa and a maximum elongation of 6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号