首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以氧化铟(In_2O_3)纳米球作为基体,采用水热法制备了氧化铟/硫化镉(In_2O_3/CdS)复合光催化剂,并利用XRD、SEM等对所制备复合光催化剂进行了表征。结果表明:复合光催化剂由立方相的In_2O_3纳米球和六方相CdS棒状结构组成,且In_2O_3纳米球附着于CdS棒状结构表面上。光学性能测试和光降解实验发现:所得复合光催化剂与纯In_2O_3和纯CdS相比,不仅光响应范围增加,而且光催化亚甲基蓝(MB)的活性也得到显著改善。当In_2O_3/CdS中n(In_2O_3)∶n(CdS)=1∶4时,光催化效率改善尤为明显,当复合催化剂的质量为0.05 g时,MB转化率达到96.2%;这可能是由于CdS接受In_2O_3表面上的光生电子,减少了光生电子与空穴的复合机会,因而提高了光催化降解能力。  相似文献   

2.
纳米CdS/TiO2对亚甲基蓝废水溶液的光催化降解研究   总被引:1,自引:0,他引:1  
曲建林  薛韩玲 《陶瓷》2007,(3):19-22
利用纳米TiO2光催化氧化技术对亚甲基蓝废水溶液进行了光催化净化研究,考察了CdS催化剂复合量、光催化剂焙烧温度对亚甲基蓝废水溶液光催化氧化的影响。研究表明:染料浓度在7.5mg,L,3%CdS/TiO2复合半导体光催化剂2.5g/L,三支8W主波长为365nm紫外灯作光源,配以适量的氧气,可达到较好的光催化降解率。适量CdS改性增强了复合半导体材料的电子和空穴分离效率,有效地提高了CdS/TiO2光催化剂的光催化活性。  相似文献   

3.
以均匀沉淀法制备纳米ZnO,并将其负载在氧化石墨烯(GO)上制得了ZnO/GO复合材料。XRD、TEM、UV、PL等证实在GO表面分散着颗粒均匀的ZnO纳米颗粒,GO与ZnO纳米颗粒之间存在电子转移效应,抑制ZnO中光生电子空穴对的复合,提高了ZnO的可见光催化性能;考察了复合材料在模拟太阳光条件下降解亚甲基蓝的光催化性能,当GO添加量为10%时,模拟太阳光照射90 min后,对亚甲基蓝的降解率达到97.2%,经过10次循环使用后降解率没有明显降低,复合材料的可见光催化活性明显优于纯的纳米ZnO,同时ZnO/GO复合材料对部分工业染料也有很好的降解活性。  相似文献   

4.
以均匀沉淀法制备纳米ZnO,并将其负载在氧化石墨烯(GO)上制得了ZnO/GO复合材料。XRD、TEM、UV、PL等证实在GO表面分散着颗粒均匀的ZnO纳米颗粒,GO与ZnO纳米颗粒之间存在电子转移效应,抑制ZnO中光生电子空穴对的复合,提高了ZnO的可见光催化性能;考察了复合材料在模拟太阳光条件下降解亚甲基蓝的光催化性能,当GO添加量为10%时,模拟太阳光照射90 min后,对亚甲基蓝的降解率达到97.2%,经过10次循环使用后降解率没有明显降低,复合材料的可见光催化活性明显优于纯的纳米ZnO,同时ZnO/GO复合材料对部分工业染料也有很好的降解活性。  相似文献   

5.
以光水解制氢中的优势材料硫化镉(CdS)作为光催化剂,借助碳化树脂(CPR)材料的导电性质,制备碳化树脂/硫化镉(CPR/CdS)复合催化剂,对CPR/CdS催化剂的理化性质和催化机理进行分析。与纯CdS相比,CPR/CdS具有更高的比表面积。通过光催化降解水产氢确定CPR的最佳用量和产氢性能。结果表明:0.5-CPR/CdS催化剂用量为0.15 g,体系pH值为5时,光催化产氢速率最高,为403.24μmol/h,循环5次实验光催化产氢速率均可以达到370μmol/h左右,稳定性良好。在复合材料中引入CPR后,CPR的掺入不仅能够提供活性位点,还能够作为电子捕获剂和电子传输剂有效分离光生电子和空穴,从而大幅度延长光生载流子的寿命,达到提高光催化反应活性的效果。  相似文献   

6.
采用溶胶-凝胶法在硅胶载体颗粒的表面制得Cu掺杂TiO2薄膜,通过扫描电镜(SEM)观察了TiO2纳米颗粒在载体表面的负载情况,显示二氧化钛纳米颗粒在载体表面是均匀分布的.研究了在自然光照条件下,碱性品红在TiO2薄膜上的光催化降解与溶液初始浓度、催化剂用量之间的关系,并比较了掺铜和未掺铜催化剂光催化的效率.结果表明,随着光催化剂投加量的增加,光降解效率增大,但当光催化剂投加量达到一定程度,继续增加其用量,光降解效率增加不多;随着初始浓度的增加,光催化效率在降低.考虑到经济性和光催化效率,选取催化剂的投加量为30.0 g/L、品红溶液初始质量浓度为10 mg/L时,5 d光催化降解率为83.61%.掺铜的TiO2薄膜比不掺铜的TiO2薄膜光催化活性高.催化剂重复使用3次的实验结果表明,其具有很好的稳定性.  相似文献   

7.
通过溶剂热法将TiO2均匀负载到了BiOI花状微球上,制备了TiO2-BiOI复合光催化剂。XRD,FT-IR,XPS,SEM,TEM和UV-Vis-NIR对样品进行了表征。以甲基橙为目标降解物,研究了TiO2-BiOI复合光催化剂在可见光下的光催化性能。研究结果表明,纳米TiO2的复合为增加复合光催化剂的比表面积作出了贡献,TiO2与BiOI之间形成的异质结构可以促进光生电子和空穴分离,从而达到提高复合光催化剂光催化性能的目的。Ti:Bi摩尔比为0.4的TiO2-BiOI复合光催化剂表现出最佳的光催化降解效率,可见光(λ>420 nm)照射60 min对甲基橙的降解率达到了95%,光催化效率要远好于纳米TiO2和纯的BiOI光催化剂。  相似文献   

8.
p型半导体红磷(HRP)和n型半导体ZnO复合后形成p-n型异质结复合半导体催化剂ZnO/HRP。以Cr(Ⅵ)为模型污染物,研究了ZnO质量分数对催化剂光催化还原性能的影响。结果发现,ZnO/HRP复合光催化剂的光催化还原速率随ZnO质量分数的增加而增大,当ZnO的质量分数为0. 25%时,ZnO/HRP复合光催化剂展现出最强的光还原性,其降解速率常数k为5. 5×10-2min-1,是HRP的14. 8倍。光催化机理探究发现,Zn O和HRP复合形成异质结后,可抑制光生电子和空穴的复合,增强光响应性,从而提高了HRP的光催化活性。  相似文献   

9.
采用水热-研磨的方法处理商业红磷(C-RP)获得纳米级RP光催化剂。选择罗丹明B(RhB)考察该催化剂的光催化活性。研究结果表明C-RP经水热后选择研磨处理,其光催化活性显著提高。当研磨2h时,光催化剂体现出最高的光催化活性,其光降解速率常数是3.16×10^-2 min^-1,是C-RP的8.25倍。系列表征结果表明C-RP水热-研磨处理后提高其光催化活性的主要原因是:粒径变小,具有更多的活性位点,提高光生电子和空穴的迁移和分离。另外,通过捕获剂实验,最终确定在光降解反应过程中起主要作用的是光生空穴(h^+)和超氧基自由基(O2^·-)。  相似文献   

10.
叙述了近年来国内外金属离子掺杂、贵金属沉积、半导体复合二氧化钛在光催化降解有机染料反应机理研究进展,以进一步揭示在TiO_2修饰改性反应机理研究中所面临的主要问题及今后改进措施,认为已开发的新型TiO_2光催化剂的光催化反应机理的研究,还处于初步设想及推测阶段,仍然需要实验进行验证。对于掺杂TiO_2光催化剂,尽管研究发现了多种可见光响应的光催化剂,但是大多数光催化反应效率较低,必须探究其它不同修饰剂对TiO_2的光吸收和光催化协同效应机理、光生电子与空穴在修饰条件下发生分离的机理,尤其是金属与非金属共同掺杂TiO_2光催化降解有机染料反应机理将是一个重要研究方向。  相似文献   

11.
有机污染物的危害日益严重,引起人们的广泛关注。半导体光催化降解有机污染物是公认的绿色技术,但传统的半导体光催化材料对可见光的利用率低,光生电子与空穴易复合,导致降解有机污染物的效率不高,开发高效、稳定的半导体复合光催化材料,是当前光催化领域的研究热点。碳量子点(CQDs)是新型的纳米级荧光碳材料,可作为修饰剂与半导体材料复合,能够显著提高复合材料的光催化降解效率,极大地激发了研究者的兴趣。本文介绍了碳量子点与半导体光催化剂的复合方法,总结了近几年CQDs/半导体复合光催化材料降解有机染料、抗生素、止痛药、酚类化合物等有机污染物的应用成果。  相似文献   

12.
将TiO2光催化剂负载在活性炭/石墨载体上,通过高聚物固体电解质Nafion分隔阴、阳极,构成新型气相光电催化反应系统.光催化层的微多孔特性使催化剂活性大大增加,外加电压使光生空穴和光生电子得到有效分离,从而使环己烷的氧化降解速度显著提高.结果表明,当涂层数为3层、水蒸气与样品比率为20∶1、外加电压为20 V时,反应降解环己烷的效率最高.  相似文献   

13.
光催化技术可直接利用太阳光实现有机污染物的深度降解,传统光催化剂二氧化钛存在可见光转换效率低,光生电子-空穴对容易复合等缺点。采用简单的化学法制备了二维纳米片层石墨相氮化碳(g-C_3N_4)包覆二氧化钛纳米粒子复合光催化剂(g-C_3N_4/TiO_2),利用XRD、UV-Vis、SEM、PL等手段对光催化剂的结构性能进行了表征,并考察了复合材料在紫外、可见光下降解亚甲基蓝(MB)、苯酚及双酚A的性能。研究结果表明:二维纳米片层g-C_3N_4的引入可以实现复合材料对可见光的吸收利用,并且可以极大地提高光生电子空穴在界面处的分离效率。在紫外光照射20 min后,5%g-C_3N_4/TiO_2复合物对染料亚甲基蓝(MB)的降解率高达90%,并且在重复使用5次之后仍具有较高的光催化性能。  相似文献   

14.
采用沉淀煅烧法,在不同煅烧温度下,使表面改性的SiC纳米棒上均匀生长NiPx纳米片,分别制备了Ni2P/SiC和NiP2/SiC异质结光催化剂.通过光催化析氢测试和光电性能表征,证明助催化剂NiPx的加入极大提升了SiC纳米棒的光催化性能,表明负载的NiPx作为助催化剂有效抑制了光生电子-空穴对的复合并提供更多的质子活...  相似文献   

15.
为了拓展对可见光的吸收范围、抑制光生载流子的复合,并增强催化剂的光催化性能,通过将CdS原位生长于In_2O_3表面的方法制备出In_2O_3/CdS催化剂。结果表明:在可见光照射60 min后,In_2O_(3/)CdS异质结对盐酸强力霉素的去除效率达84.0%,远高于In_2O_3和CdS单体的降解效率,降解过程符合一级动力学。In_2O_3/CdS对盐酸强力霉素的降解速率常数为0.028 min~(-1),分别为In_2O_3和CdS单体的13.7倍和1.5倍。自由基捕获实验表明:·O_2~-和·OH是主要的活性基团,光催化性能的提高主要得益于Z型异质结的形成,有效加速了光生电子和空穴的转移和分离效率。  相似文献   

16.
采用共沉淀-浸渍法制备掺Fe的改性纳米TiO2光催化剂,以五氯酚(PCP)的光催化降解反应为模型,研究了不同光催化剂、不同光催化降解体系对水体中PCP降解效率。结果表明,适量Fe元素掺杂改性TiO2后,光催化剂为锐钛矿型,粒径变小,形貌规则,分散性能良好,且掺杂后可降低纳米TiO2光生电子-空穴对的复合几率,提升光催化剂对可见光子利用率。0.008%Fe-TiO2具有最佳的PCP可见光催化降解效率,降解率达90.3%,超声对光催化氧化降解水体PCP有良好协同作用。该降解反应体系简单、可直接利用可见光,成本低、便于推广。  相似文献   

17.
以硝酸镉和硫代乙酰胺为原料,在经浓硝酸处理过的碳纳米管(CNTs)表面原位生成硫化镉(CdS)纳米颗粒,制备了CdS/CNTs光催化剂。在可见光条件下比较了CdS/CNTs样品与简单混合的CdS-CNTs样品以及纯的CdS样品的光催化性能,讨论了CNTs对CdS光催化性能的增强机理。结果表明,CdS/CNTs样品对甲基橙的光催化降解性能与简单混合的CdS-CNTs样品以及纯的CdS样品相比有显著增强,说明CNTs在CdS/CNTs样品中起到了分离电子-空穴对的作用。  相似文献   

18.
《化学工程》2016,(6):26-31
采用水热合成法制备出了具有p-n异质结结构的立方形氧化铟表面负载片状氧化镍复合光催化剂。SEM,XRD和UV-VIS,FT-IR等方法对催化剂的晶相组成、微观结构、化学键组成以及吸光性能等进行了表征。结果表明,NiO/In_2O_3复合光催化剂的形成符合牺牲模板机理。片状氧化镍的负载使复合光催化剂的吸收带边发生了明显的红移,并在可见光区产生响应。光催化降解盐酸强力霉素实验表明,与单一的In_2O_3相比,氧化镍颗粒的负载使二氧化铟的光催化效果在紫外-可见光区有了明显地提高,且在中性以及碱性条件下的光催化效果最佳,降解效率达到93%,其主要原因应归功于氧化镍晶粒与二氧化铟晶粒紧密接触形成p-n异质结,有助于催化剂表面光生电子和空穴的快速分离。  相似文献   

19.
利用溶剂热法制备复合型MOF-808/MIL-101(Fe)光催化剂。使用罗丹明B(RhB)作为目标污染物,通过调节不同MOF-808的负载量探究MOF-808/MIL-101(Fe)复合材料光催化性能与负载量之间关系。结果表明,在MOF-808质量分数为7%时,在可见光下其对RhB的光催化降解率可达95%以上,再生循环5个周期,光催化剂的去除率仍然维持90%以上,良好的循环稳定性源于复合材料的构建能有效地抑制电子和空穴的复合。通过XRD、FT-IR、UV-vis和TGA等一系列表征手段对复合物的物相组成、热稳定性、光生电荷分离率和光学性质等进行分析,复合材料的构建相较于单一类型的光催化剂有效地提高了光生电子的分离效率,在降解有机染料RhB方面表现出优异的性能。通过自由基捕获实验研究催化过程中可能存在的活性物种,实验表明超氧自由基和空穴是主要的活性物种,基于以上实验和表征提出了可能的光催化机理。  相似文献   

20.
从提升光生电荷分离效率的角度出发,先采用一步水热法制备了单晶TiO_2纳米棒阵列,再经简单的常温化学浴处理在其表面复合TiO_2纳米颗粒,获得了核壳结构的TiO_2纳米棒阵列-TiO_2纳米颗粒(TNR@TNP),通过XRD、SEM、TEM对其结构和形貌进行了表征,并对其室温下降解气态苯的光催化性能进行了评价,通过光电流测试和XPS表征对其光催化降解机理进行了研究。结果表明,化学浴浸泡30h的TNR@TNP的光催化降解气态苯的活性最强;TiO_2纳米颗粒表面的氧空位缺陷能够捕获空穴,将空穴钉扎在其表面,而电子则沿着TiO_2纳米棒阵列方向迁移至FTO导电玻璃,从而提升光生电荷分离效率,使得TNR@TNP的光催化活性明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号