首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
提出了一种利用同步调相机提升送端双馈风电场高电压穿越能力的无功协调控制策略,以避免风电场大规模脱网。大容量同步调相机由于其动态无功支撑和短时过载能力强,现已广泛应用于直流输电系统中,然而由于同步调相机的响应时间有限,其故障时无功出力会出现滞后。在分析了双馈风机和调相机的无功出力特性后,提出了一种无功协调控制策略。在部署同步调相机的同时,通过在故障暂态期间控制风电场参与无功调节,可以优化电网电压骤升期间的无功补偿。并在故障后稳态期间控制风电场退出无功调节,使得故障恢复后风电场能更快进入正常运行。在系统发生直流闭锁、小无功扰动或连续换相失败等故障下的仿真结果表明,协调控制方法可以在故障期间有效降低风机峰值端电压,加快系统电压恢复。  相似文献   

2.
针对直流闭锁故障导致的高比例新能源多直流送端系统暂态过电压问题,文中首先分析多直流间的交互影响机理,引入多馈出电压交互作用因子,揭示了直流闭锁导致其他健全直流近区域交流系统暂态过电压的根本原因。其次基于直流闭锁故障下调相机不同时间尺度的无功特性与整流侧换流母线电压的定量关系,在改进直流系统整流侧控制的前提下,于整流侧母线处投入调相机并以调相机暂态无功特性对其容量进行配置,降低了调相机所需投入容量。然后整合了调相机与整流器的无功调节能力,据此提出多直流、多无功设备协调配合的暂态过电压抑制策略。最后在PSCAD仿真平台中搭建两直流送端系统模型,验证了所提协调策略对暂态过电压的抑制效果以及调相机容量的配置效果。  相似文献   

3.
在大规模风电接入的高压直流送端电网中,针对发生直流故障后送端交流电压大幅波动导致的风机连锁脱网问题,探讨了直流故障导致风机连锁脱网的内在机理,分析了调相机和静止无功补偿器(SVC)在换相失败和闭锁过程中的动态无功响应特性;在此基础上,提出一种基于换流站侧调相机与风电场侧SVC协调的抑制高压直流送端风机脱网的控制策略:在换相失败和直流闭锁的不同时期,根据送端电压变化特点,分时发挥调相机自发无功响应能力、励磁控制能力和SVC无功调节能力,以抑制暂态压降或暂态压升的幅度超过风机脱网的保护阈值.最后,通过对测试系统和实际电网的仿真,验证了所提控制策略可有效抑制直流故障后送端暂态电压变化,降低风机连锁脱网的风险.  相似文献   

4.
随着特高压直流远距离输电技术的推广应用,"强直弱交"现象日益明显,交流电网短路容量降低,电网抗无功冲击和电压稳定问题日益突出,对换流站稳定运行产生很大影响,增加了换相失败概率。针对调相机的动态无功补偿、提高系统短路容量等特性,国家电网公司对调相机的应用提出了新的要求。对调相机应用背景、调相机无功调节原理、控制功能策略及在换流站无功传输和电压稳定方面优越性等进行分析,提出目前调相机应用存在的缺陷,以便后期研究不断完善。  相似文献   

5.
高压直流输电系统出现闭锁、换相失败等故障时,会引起送端换流站附近新能源电站的瞬时电压波动并易导致其脱网。首先,分析了构网型储能开环控制策略的运行原理、响应特性和关键参数影响。然后,分析了调相机的无功响应特性,并将构网型储能无功控制模型与调相机的励磁调节控制模型进行对比。最后,搭建了包含特高压直流、光伏、调相机、构网型储能的半实物仿真系统,进行了直流换相失败故障下的交流暂态过电压抑制效果对比试验。结果表明,容量相同的构网型储能和分布式调相机在无功瞬时响应速度、抑制交流暂态过电压能力方面可以实现相近的效果。  相似文献   

6.
为解决特高压直流输电送端系统换相失败引起的暂态电压升高和短路容量支撑问题,采用了具有良好动态性能的大容量新型调相机.当送端系统发生直流闭锁或者连续换相失败时,会产生高达1.3倍额定电压的系统过电压,并会使调相机相应地产生很大的瞬时进相无功功率,功率数值则取决于调相机的性能参数和初始状态.本文通过理论计算和计算机仿真,得出不同初始状态下的调相机最大瞬时进相无功值.通过分析,指出通过设计制造和改变运行方式来提高调相机承受瞬时进相无功的措施.  相似文献   

7.
多馈入直流系统中交流侧短路故障发生后,导致交流系统电压持续降低进而引起多条甚至全部直流同时发生换相失败,使电网安全稳定性受到严重破坏。同步调相机具备过载能力,且其无功输出受系统电压影响小,在面对交流故障带来的电压跌落可以提供较强的无功支撑,从而抑制直流换相失败的发生。为了抑制直流换相失败,提出了一种抑制多馈入直流换相失败的同步调相机优化配置方法,对其安装地点及容量这两个方面同时进行了优化配置。首先从直流换相失败持续时间出发,且考虑各直流间相互作用,提出了一种抑制换相失败效果指标;然后根据电气距离确定了安装待选区域,由无功补偿响应指标筛选出同步调相机最佳补偿地点;随后建立了同步调相机配置优化模型,对最佳配置方案进行二阶段的求解,获得最终配置方案;最后在实际大电网仿真结果表明,所得最终解能够考虑经济性的同时有效抑制交流故障引起的多馈入直流换相失败。  相似文献   

8.
针对电网换相换流器的高压直流输电系统(line commutated converter high voltage direct current,LCCHVDC)易于发生换相失败的缺点及柔性直流输电(voltage source converter based high voltage direct current,VSCHVDC)具有的有功无功快速独立控制的优点,为了充分发挥VSC-HVDC提高LCC-HVDC抵御换相失败能力的作用,提出了适用于并联混合直流输电系统的基于逆变器关断角γ的暂态无功协调控制策略。将故障时根据γ角得出的无功功率补偿值附加至柔性直流换流器外环无功控制环节,调节柔性直流换流器发出的无功功率,在故障时降低LCC-HVDC的直流电流增加量或调节换流母线电压,达到提高LCC-HVDC换相失败抵御能力的目的。在PSCAD/EMTDC仿真环境中搭建了并联混合双馈入直流输电系统模型,从换相失败免疫性指标(commutation failure immunity index,CFII)的角度研究了不同强度交流系统下基于γ角的暂态无功协调控制策略对LCC-HVDC抵御换相失败能力的影响。结果表明,基于γ角的暂态无功协调控制策略可以显著提高LCC-HVDC抵御换相失败的能力。  相似文献   

9.
抑制直流连续换相失败的调相机紧急控制   总被引:1,自引:0,他引:1  
多直流馈入受端电网的换相失败是威胁系统安全的重要问题,为增强系统的动态无功支撑能力,降低直流换相失败概率,国家电网有限公司将在全网部分直流换流站内配置一定数量的调相机。文中首先分析了调相机投运对电网直流换相失败特性的影响,针对常规调相机控制方式在抑制直流连续换相失败方面的不足,分析了调相机紧急控制对抑制直流连续换相失败的效果。根据实际电网中直流连续换相失败特点及控制要求,设计了预防直流连续换相失败的调相机紧急控制系统架构,并提出了调相机紧急控制的实现方法,基于实际电网仿真验证了所提控制架构和方法的有效性。  相似文献   

10.
为了抑制柔性直流与传统直流互联输电系统中传统直流换相失败导致的送端电网暂态低电压和过电压,充分发挥柔性直流为传统直流提供无功支撑的能力,提出一种基于触发角的暂态无功协调控制策略。传统直流换相失败时触发角与送端暂态电压关系密切,基于此,将暂态过程中根据触发角得出的无功补偿值附加到柔性直流逆变器外环无功环节中,调整柔性直流逆变器发出的无功功率,改善送端电网电压的暂态特性。对比分析所提控制策略与柔性直流定交流电压控制的控制性能。在PSCAD/EMTDC中搭建互联输电系统的仿真模型,结果验证了所提控制策略的适应性,且该控制策略的控制效果优于柔性直流定交流电压控制。  相似文献   

11.
研究了新一代调相机在我国特高压直流送受端的应用。首先结合直流对于调相机的技术需求,研究了调相机模型,提出基于不同时间尺度的次暂态、暂态、稳态3种运行特性。然后,基于酒泉—湖南直流风火打捆送端,从增加系统短路比、降低新能源高压脱网风险、抑制稳态过电压等角度研究了调相机在特高压直流送端的应用效果;基于华东多直流馈入受端电网,从提高直流多馈入短路比、降低多回直流同时换相失败的风险、提升严重故障下的系统电压稳定水平等角度研究了调相机在特高压直流受端电网的应用效果。最后,从设备角度提出新一代调相机在运行维护、无功响应特性等方面相较于传统调相机的技术优势,旨在为调相机后续投入工程运行提供技术支撑。  相似文献   

12.
在特高压直流换流站配置同步调相机可以给交流电网提供动态支撑、提高系统稳定性,但当前调相机与换流站交流滤波器均为单独控制,两者之间缺乏合理的协调配合。针对此问题,考虑调相机与换流站交流滤波器现有的控制策略及特性,提出一种稳态无功功率协调控制策略。于两者控制系统之间实现数据交互,在确保不影响调相机对交流电网动态支撑作用的前提下,直流控制系统调用调相机稳态无功容量的一部分,与换流站交流滤波器配合进行无功功率平衡控制,充分发挥了调相机的无功补偿作用。最后,通过仿真验证了该策略的有效性。  相似文献   

13.
直流输电系统在发生换相失败、直流闭锁等故障时,会引发送端暂态过电压。本文分别在基于电磁暂态的两区域直流系统算例和基于机电暂态仿真的大电网算例中分析比较了在直流换相失败及闭锁故障时,3种动态无功补偿装置的抑制能力。仿真结果表明,基于电磁暂态的两区域直流算例和基于机电暂态的大电网算例得到的结论基本一致,相互印证,即同步调相机具有更好的暂态过电压抑制能力。最后,通过优化调相机的直轴暂态电抗和直轴暂态时间常数等关键性能参数,能够更好地抑制直流故障导致的送端交流母线的暂态压升。  相似文献   

14.
网源稳态调压方式会对系统动态无功支撑能力产生直接影响。针对特高压弱受端电网电压稳定性下降的问题,提出了一种直流换流站内滤波电容欠补偿、同步调相机迟相运行的稳态无功协调控制策略。同步调相机自动电压控制(AVC)子站作为控制中枢,与直流控保系统进行运行信息、动作指令信息和动作报文信息通信,以交直流系统无功交换量为控制目标,通过同步调相机与滤波电容无功置换,达到减少滤波电容投入组数、增加同步调相机稳态无功出力的目的,从源头上减少交流电压跌落导致的直流换流站无功补偿缺额。基于雅中—江西特高压直流投运后的江西电网规划数据,在PSASP仿真平台上开展潮流计算与暂态稳定分析。不同工况下的仿真结果表明,所提协调控制策略可以有效降低弱受端电网电压失稳的风险,提升直流功率的消纳能力。  相似文献   

15.
随着直流输电工程应用的增多,一旦常规直流发生连续换相失败将会对电力系统的稳定运行产生极大的影响,因此为了抑制混合多馈入直流输电系统中常规直流的连续换相失败,本文从提升常规直流换相电压的角度出发,提出了混合多馈入直流输电系统的协调控制策略。该策略根据常规直流的实时无功缺额动态调节柔性直流输出的无功功率与有功功率,从而改变其暂态稳定运行点。通过该策略的协调控制可以抑制常规直流的连续换相失败以及较大限度提升直流输电系统有功功率的传输能力。最后在PSCAD/EMTDC中搭建了混合双馈入直流输电系统的仿真模型,验证了该协调控制策略的有效性。  相似文献   

16.
动态无功补偿装置提高多馈入直流恢复的布点方法   总被引:2,自引:0,他引:2  
交直流混联系统中交流系统短路故障发生后,由于交流系统电压不能恢复或持续降低而引起多回直流输电系统连续发生多次换相失败甚至闭锁,采用动态无功补偿装置提高多馈入直流换相失败过程中电压恢复。分析了不同地点及程度交流故障下不同补偿装置直流恢复速度,从多馈入直流间相互影响的交互作用因子出发,计及不同直流传输功率故障后对系统稳定性的影响,定义了多馈入直流交互影响权重系数,确定动态无功补偿装置补偿区域边界,考虑动态无功—电压灵敏度以确定动态无功最佳补偿地点,制定了工程实用的多馈入直流系统动态无功补偿装置布点方案。大电网仿真结果表明,在同等容量的动态无功补偿装置下,推荐方案能有效减少交流故障引起的多馈入直流同时换相失败。  相似文献   

17.
同步调相机作为特高压直流配套工程投产后,开展其对受端电网运行影响以及协调控制策略研究具有重要现实意义。首先分析了大型同步调相机的无功运行特性,建立了不同时间尺度下的调相机无功电压模型。其次通过华东实际电网算例,仿真分析了对电压特性、短路电流以及换相失败等的影响。仿真结果表明,调相机接入后可以有效提升电压支撑能力,显著增强电网强度,降低换相失败风险,验证了理论分析的正确性。最后提出将调相机接入AVC统一调配,并采用较小静态调差系数和稳态迟相运行的控制策略,可充分发挥调相机的动态无功支撑作用。  相似文献   

18.
多直流馈入受端电力系统面临严峻的电压稳定性挑战,在关键节点布置同步调相机,可以提供动态无功支撑,降低直流换相失败风险。该文研究提升直流受端系统电压稳定性的同步调相机容量自动优化配置方法。首先,以调相机经济成本及暂态电压跌落水平最小为优化目标,以直流换相失败风险为约束条件,建立同步调相机容量优化模型;其次,提出基于粒子群算法的优化求解方法,快速高效获得优化配置方案;再次,提出基于文件交互的Matlab/DigSilent联合仿真方法,实现优化问题的自动迭代计算;最终,通过仿真验证文中所提出的调相机容量优化配置方法的有效性和计算效率。  相似文献   

19.
调相机作为无功补偿设备广泛加装于特高压直流输电工程,能有效解决电力系统无功支撑能力不足的问题。本文首先系统分析调相机的数学模型,提炼出调相机动态性能优化的电气参数。通过仿真及实际工程的应用效果验证了调相机的良好的无功出力特性。然后将调相机与其他无功补偿设备进行比较,说明了调相机具备更强的暂态无功输出与电压支撑能力。在此基础上,详细阐述了现有调相机无功电压控制策略,并分析了不同控制策略的优缺点。最后,结合当前电网对同步调相机组的要求,探讨了未来同步调相机发展需要研究的关键技术。  相似文献   

20.
在高压直流输电系统发生严重电压跌落故障时,为提高系统的稳定性,降低换相失败的风险,在直流输电系统受端或弱交流系统送端宜加装调相机。正常情况下调相机的运行状态与同步电动机相同,但因其功能的特殊性,调相机与同步电动机在结构上有一定的区别,这就有必要对其启动和并网方式进行探讨。确定了调相机的最佳启动方式,提出在105%额定频率下堕速运行寻找同期点的方法 ,并以实例验证了该方法的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号