首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Principal in-plane permeabilities of a unidirectional flax/paper reinforcement are characterized in terms of reinforcement material and manufacturing parameters at a constant fiber volume fraction (Vf). ANOVA result shows that surface density of the unidirectional flax layer is the most important parameter on the mean and variance of the K1 permeability. On the other hand all four studied parameters are concluded to affect the K2 permeability. The K1 permeability is found close to that of a twill weave flax fiber fabric reported in the literature and only one order of magnitude lower than a plain weave glass fiber fabric. Impregnation of the reinforcement with epoxy resin shows that a large area of the molded plaques was dominated by capillary forces during resin injection. This means capillary number and subsequently the resin injection velocity should be optimized for reducing void content in the final composite.  相似文献   

2.
To obtain useful flow simulations to support mould design, it is necessary to use accurate permeability values. In the work described here, the permeability of carbon fibre preforms with and without stitches was measured. A preform is a multilayer package of material ready to be impregnated using liquid transfer moulding technology. The main parameters which vary in the preforms are the stitching pattern, meaning the distance between the stitch rows through the preform, the stitching thread tension and the stacking sequence of the layers. The permeability measurements were carried out using a continuous, two-dimensional radial-flow measurement technique. The measuring device consists of an aluminium mould with integrated dielectric sensors (surface treated to prevent short circuit). The sensor system relies on the change in the dielectric properties of the material as saturation takes place. The results showed that stitching has a positive influence on the permeability. The stacking sequence was found to be the most effective way to influence permeability.  相似文献   

3.
Various Liquid Composite Molding processes provide out-of-plane impregnation. Thereby, the emerging pressure distribution leads to a hydrodynamic compaction of the fiber structure. A prediction of the behavior of the fiber structure under these conditions is highly complex, due to strong interdependencies between pressure distribution, compaction behavior, and impregnation behavior. In this study possibilities to influence the hydrodynamic behavior of textiles by preforming technology are investigated, by comparing an untreated glass fiber woven textile with sewed, bindered, sheared, and pre-compacted samples of the same material. A novel measurement apparatus, reproducing the conditions during out-of-plane impregnation, is applied for this purpose. It enables out-of-plane permeability determination simultaneous to online compaction monitoring. Sewing accelerates out-of-plane impregnation, while inactivated binder can preserve the available permeability at high injection pressures. The increasing superficial density and the geometrical changes caused by shearing decrease permeability.  相似文献   

4.
LCM 充模过程中的边缘效应   总被引:1,自引:1,他引:0       下载免费PDF全文
边缘效应是复合材料液体模塑成型技术(Liquid composites molding , LCM) 中常见的纤维预成型体铺敷缺陷之一。采用单向流动法研究了边缘效应对纤维预成型体渗透率及充模过程的影响, 结合其等效渗透率的理论预测模型对不同纤维体积含量、不同缝隙宽度条件下的边缘效应进行了模拟与分析, 提出了一边缘效应强弱的表征因子, 并以一较复杂的模腔的充模过程为实例提出了对边缘效应的在线监控策略及处理方案。   相似文献   

5.
On-line strategic control of liquid composite mould filling process   总被引:3,自引:0,他引:3  
Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped fibre reinforced polymeric composite parts in the aerospace, automotive, marine and civil industries. A thermoset resin is injected into a mould cavity filled with a reinforcing fibrous preform. The composite part is demoulded after the filling is completed and resin has cured. During prototype development, the design engineers may combine their manufacturing experience with simulations to decide which LCM process must be used for the selected part. For complicated mould shapes, the manufacturing engineer has to make decisions about injection pressure, flow rate, location of gates and vents, etc. to achieve a high-quality composite part which is free of dry spots. Inherent variability in the process and the possible errors in characterization of material properties, such as fibre volume fraction and permeability, challenge the manufacturing engineer to reduce the number of unacceptable parts. An on-line strategic controller with in situ sensor data can influence the flow front pattern during mould filling and drive the process towards successful completion. Some of these variabilities are considered in off-line mould filling simulations. By analysing the simulation results, the sensors are placed inside the mould to identify the variabilities and take corrective action(s) to eliminate voids. Sensor data and the control actions are cast in the form of a decision tree. Data acquisition software collects the in situ sensor data and implements the control actions from this decision tree. A case study was included in which various race-tracking and bulk permeability variations can be expected during manufacturing. The proposed controller is described in detail for this selected case study and its usefulness is verified with experiments.  相似文献   

6.
《Composites Part A》2003,34(8):779-789
For liquid composite molding (LCM) processes, such as resin transfer molding (RTM), the quality of final parts is heavily dependent on the uniformity of the fiber preform. However, the conventional permeability measurement method, which uses liquid (oil or resin) as its working fluid, only measures the average preform permeability in an off-line mode. This method cannot be used to create an in situ permeability profile because of fiber pollution. Further, the conventional method cannot be used to reveal preform's local permeability variations. This paper introduces a new permeability characterization method that uses gas flow to detect and measure preform permeability variations in a closed mold assembly before resin injection. This method is based upon two research findings: (1) resin permeability is highly correlated with air permeability for the same fiber preform with well-controlled gas flow, and (2) the whole-field air permeability profile of a preform can be obtained through measuring the pressure field of gas flow.In this study, first the validity of the gas-assisted, in situ permeability measurement technique was established. Then the technique was demonstrated as effective by qualitatively detecting non-uniformities and permeability variations in fiber performs. Finally, a two-dimensional flow model, based on the finite difference scheme, was developed to quantitatively estimate the whole-field preform permeability profile using predetermined pressure distribution. The efficacy of the new method was illustrated through experimental results.  相似文献   

7.
8.
基于单向流动研究三维编织预制件的渗透性   总被引:4,自引:3,他引:1       下载免费PDF全文
采用单向法测量了三维编织预制件的饱和与不饱和渗透率, 从渗透率实验确定了毛细压力, 研究了纤维体积分数对饱和、不饱和渗透率的影响。分析了编织参数、注入压力对渗透率测量的作用, 以注入压力Pm 为x轴, 以相同的某一段时间所到达的流动前沿的平方( x2 ) 为y 轴作图, 并拟合成直线, 该直线与x 轴的水平截距即为毛细压力。实验结果表明: 随着纤维体积分数的增加, 饱和渗透率与不饱和渗透率均降低, 且饱和渗透率大于不饱和渗透率; 编织结构影响渗透率, 不饱和渗透率随着编织角的增加而减小; 准确的渗透率的测试结果不依赖注入压力, 开始阶段渗透率值较大, 随着充模距离的增加, 渗透率逐渐降低, 并趋于稳定值。   相似文献   

9.
The transverse electrical resistivity of the dry unidirectional carbon fiber preforms was studied experimentally taking into consideration various parameters. The dependency of the electrical resistivity transverse to the fibers was thoroughly experimentally studied as a function of the preform thickness and the fiber volume fraction. Empirical mathematical relations were extracted and combined with a non-linear compaction semi-analytical formula. The extracted formula consolidates the compressibility of the preform material, the preform thickness and the fiber volume fraction or the applied pressure in order to calculate the electrical resistivity of the unidirectional preform material transverse to the fibers. Two electrical resistance measurements, at two different thicknesses and two electrical resistance measurements, at two different pressure levels, are necessary to obtained, in order to predict the full range of the electrical resistivity values of the preform material transverse to the fibers as a function of thickness and fiber volume fraction. Very good agreement between the proposed formulas and the experiments has been obtained.  相似文献   

10.
Characterization of preform permeability in the presence of race tracking   总被引:2,自引:0,他引:2  
For realistic simulation of resin flow in a stationary fibrous porous preform during Liquid Composite Molding (LCM) processes, it is necessary to input accurate material data. Of great importance in simulating the filling stage of the LCM process is the preform permeability; a measure of the resistance the preform poses to the flowing fluid. One method to measure permeability values is by conducting one-dimensional flow experiments, and matching the flow behavior to known analytical models. The difficulty is the edge effects such as race tracking disrupt the flow and violate the one-dimensional flow assumption. The new approach outlined in this paper offers a methodology to obtain accurate bulk permeability values despite any race tracking that may be present along the edges of the mold containing isotropic fabrics. Further, a method of approximate equivalent isotropic scaling is explained to extend the use of this method to determine permeability of anisotropic materials with race tracking present. Both approaches are validated with computer simulations, and then utilized in laboratory experimentation. The values calculated from this approach compare well with permeability values obtained from one-dimensional permeability experiments without the presence of race tracking.  相似文献   

11.
Compression resin transfer molding (CRTM) is an alternative solution to conventional resin transfer molding processes. It offers the capability to produce net shape composites with fast cycle times making it conducive for high volume production. The resin flow during this process can be separated into three phases: (i) metered amount of resin injection into a partially closed mold containing dry fiber preform, (ii) closure of the mold until it is in contact with the fiber preform displacing all the resin into the preform and (iii) further mold closure to the desired thickness of the part compacting the preform and redistributing the resin. Understanding the flow behavior in every phase is imperative for predictive process modeling that guarantees full preform saturation within a given time and under specified force constraints.  相似文献   

12.
Air entrapment within and between fiber tows during preform permeation in liquid composite molding (LCM) processes leads to undesirable quality in the resulting composite material with defects such as discontinuous material properties, failure zones, and visual flaws. Essential to designing processing conditions for void-free filling is the development of an accurate prediction of local air entrapment locations as the resin permeates the preform. To this end, the study presents a numerical simulation of the infiltrating dual-scale resin flow through the actual architecture of plain weave fibrous preforms accounting for the capillary effects within the fiber bundles. The numerical simulations consider two-dimensional cross sections and full three-dimensional representations of the preform to investigate the relative size and location of entrapped voids for a wide range of flow, preform geometry, and resin material properties. Based on the studies, a generalized paradigm is presented for predicting the void content as a function of the Capillary and Reynolds numbers governing the materials and processing. Optimum conditions for minimizing air entrapment during processing are also presented and discussed.  相似文献   

13.
Various modelling aspects of the permeability of three-dimensional (3D) woven textile preforms are studied using computational fluid dynamics (CFD). The models are built using a recently developed technique able to generate close to authentic representations of 3D textile arrangements. One objective of the study is to investigate how parameters such as the tow architecture and the level of detail in the CFD models influence the results. A second objective is to investigate how the inter and intra-tow porosity affect the permeability. They are varied in a way that somewhat resembles how they would change during compaction, although compaction as such is not modelled. It is concluded that the intra-tow porosity has little effect on the overall permeability of a 3D-woven preform. Detailed modelling of local variation of the intra-tow porosity is thus redundant, which is also demonstrated. The inter-tow porosity, on the other hand, has a prominent influence on the overall permeability. The overall permeability is inherently anisotropic but when the inter-tow porosity is increased the permeability does not increase uniformly but becomes more isotropic. Good agreement is obtained between the numerical simulations and experiments performed in a parallel study.  相似文献   

14.
In the resin transfer molding process, residual air in the pores of fiber preform results in dry spots and microvoids in the finished product. The dry spots are usually formed due to irregular permeability of fiber mat and improper injection locations. The microvoids result from non-uniform microarchitecture of the fiber preform, and they are transported through the gap between fiber tows during infiltration of the resin. In this study, a real-time simulation/control method was proposed to actively control the formation and the transport of air voids during the mold filling. The flow equations were solved in real time to predict the change of the flow front shape. The flow front was detected by optical sensors and the control actions were taken based on the sensor signals. Through this automated simulation/control scheme, a real-time control of resin flow could effectively avoid the dry spots and minimize the formation of microvoids by modulating the injection pressure.  相似文献   

15.
The injection of a liquid metal through a fibrous preform is one of the techniques used to manufacture metal matrix composites (MMCs). The flow of metal through fibrous preform is a problem of fluid mechanics in porous medium. Numerical simulations of this process were developed in particular for non-isothermal infiltrations which take into account the phenomena of phase change. In addition, numerical models were developed to predict the appearance of defects in the end product and to study the evolution of the deformation of the fibrous preform during metal infiltration. After pointing out the analogous numerical studies devoted to the Resin Transfer Moulding (RTM) process, we give a progress report on the models developed to date for MMCs.  相似文献   

16.
树脂在复合材料预成型体厚度方向的渗透能力对复合材料液体模塑成型工艺(LCM)的成功实施至关重要。本文采用连续加载的方式,研究了玻璃纤维增强树脂基复合材料液体成型过程中多轴向无屈曲织物(NCF)和斜纹织物(WF)的压缩响应行为,并建立描述该行为的数学模型。采用自制测试装置对预成型体在重力等不同注射压力驱动下的厚度方向渗透率进行测试,考察了预成型体纤维体积分数、测试流体注射压力等对预成型体厚度方向渗透率Kz的影响。基于预成型体压缩响应数学模型和厚度方向渗透率与注射压力的关系,对Kozeny-Carman公式进行修正,提出了变注射压力条件下的厚度方向渗透率预测模型。结果表明:预成型体厚度方向渗透率随着纤维体积分数的增大而减小,与Kozeny-Carman方程结果相符合。当纤维体积分数为0.42≤Vf≤0.58时,注射压力对厚度方向渗透率影响较大,实验结果验证了本文提出的预测模型;当纤维体积分数Vf≥0.58时,注射压力对厚度方向渗透率影响较小,厚度方向渗透率趋于恒定。   相似文献   

17.
以航空碳纤维增强树脂基复合材料典型结构件带筋壁板为研究对象,通过对U3160单向织物的组织结构进行分析,根据纤维束的受压变形状态对其压缩响应进行理论建模,然后以纤维束压缩模型为基础,预测了U3160单向织物按0°/45°/90°/-45°铺层时预成型体在压缩应力作用下厚度变化的响应行为。建立了压缩应力作用下纤维预成型体的渗透率解析模型:在织物压缩模型的基础上,建立了纤维束等效渗透率模型;根据张量理论,分别建立了0°、±45°和90°铺层织物等效渗透率模型;运用渗透介质串并联关系,建立了带筋壁板各特征区域渗透率综合表征模型。基于PAM-RTM流动模拟软件,进行分区渗透率定义,在充模过程中对树脂在带筋壁板预成型体中的流动行为进行模拟,优化工艺参数,确定出最终充模方案,并制作带筋壁板实验缩比件进行成型实验,验证了充模方案的合理性。研究结果为制件的成功制作提供理论依据,从而指导生产实践。   相似文献   

18.
选用尼龙无纺布(Polyamide Nonwoven Fabric,PNF)作为结构化增韧层,研究了增韧层的引入对纤维预成型体在树脂传递模塑成型(RTM)工艺过程中渗透特性的影响。结果表明:在径向非饱和流动模式下,层间增韧预成型体沿纤维方向的渗透率为5.2×10-12 m2,略低于非增韧预成型体的7.1×10-12 m2,而沿垂直于纤维方向的渗透率为2.3×10-12 m2,略高于非增韧预成型体的1.6×10-12 m2。此外,层间增韧预成型体的单向饱和流动渗透率为2.6×10-12 m2,较非增韧预成型体的1.9×10-11 m2下降了约1个数量级,z向饱和流动渗透率较非增韧预成型体的1.3×10-13 m2下降至2.5×10-14 m2,同样下降了约1个数量级。对复合材料层间微观形貌的分析结果表明:造成预成型体渗透率下降的主要原因首先是PNF引入至层间之后将阻碍层间树脂的快速流动,同时增韧层将使层内纤维含量明显升高,由55.3vol%上升到63.7vol%。  相似文献   

19.
Structural composite manufacturing relying on Liquid Composite Molding technologies is strongly affected by local variability of the fibrous reinforcement. Optical techniques using light transmission are used and allow field measurements of areal weight (and fibre volume fraction) of glass fibre reinforcement. The coupling of obtained areal weight mappings along with injection flow fronts is used to extract in-plane permeability fields. The current work presents results with a focus on glass random mats, but the method can be adapted to any glass fibrous medium. A study of convergence and error due to discretization is performed. Also the influence of the stacking of fibrous layers on the preform variability is analyzed. The major advantage of the proposed technique is a relatively fast acquisition of statistical data on reinforcement variability, which can be later utilized in stochastic based process simulations.  相似文献   

20.
We propose a new experimental method using a Hassler cell and air injection to measure the permeability of fiber preform while avoiding a race tracking effect. This method was proven to be particularly efficient to measure very low through-thickness permeability of preform fabricated by automated dry fiber placement. To validate the reliability of the permeability measurement, the experiments of viscous liquid infusion into the preform with or without a distribution medium were performed. The experimental data of flow front advancement was compared with the numerical simulation result using the permeability values obtained by the Hassler cell permeability measurement set-up as well as by the liquid infusion experiments. To address the computational cost issue, the model for the equivalent permeability of distribution medium was employed in the numerical simulation of liquid flow. The new concept using air injection and Hassler cell for the fiber preform permeability measurement was shown to be reliable and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号