首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a nonparametric controller with an internal model control (IMC) structure for the longitudinal speed tracking control of autonomous land vehicles by designing a proportional and internal model control (IMC) cascade (P‐IMC) controller. An IMC architecture is employed in the inner control loop by establishing a nonparametric longitudinal dynamical model, whereas a P controller is designed for the outer control loop. An approach for estimating the terrain effects and compensating for the model errors is also introduced. The differences from other nonparametric controllers are discussed, and the stability of the P‐IMC controller is analyzed and validated experimentally. The P‐IMC controller is compared with the SpAM+PI to illustrate its advantages. The experimental results of autonomous all‐terrain driving show the effectiveness of the P‐IMC controller.  相似文献   

2.
基于无刷直流电机数学模型,采用Simulink建立了无刷直流电机调速系统的仿真模型,研究了两种电流跟踪控制技术。系统采用双闭环控制,速度环采用PI调节器,电流环分别采用滞环比较电流跟踪控制和三角波比较电流跟踪控制。对两种电流跟踪控制方案进行了仿真比较,得出的结论为高性能无刷直流电机控制器的设计提供了参考。  相似文献   

3.
This paper is a proposal of a modified internal model control based on an intelligent technique. The indirect field oriented control strategy (IFOC) is used as a permanent magnet synchronous motor (PMSM) drive platform. Neural network controller and estimator are respectively added to replace the conventional speed regulator and the speed encoder in the global drive scheme. A wide speed working range is considered and high speed mode is incorporated in the study testes. In the IFOC inner control loops, the commonly used synchronous frame conventional proportional plus integral (PI) controllers are replaced by two modified internal model control (IMC) regulators. Therefore, a method based on the bacterial foraging optimization (BFO) algorithm is performed to optimize and adjust the IMC low pass filter parameters. The robustness of the proposed PMSM sensorless drive scheme is confirmed by simulation tests in the MATLAB/SIMULINK. Moreover, a comparative evaluation results are illustrated to prove the effectiveness of the proposed control algorithm according to different controllers combinations.  相似文献   

4.
This paper presents an application of gain-scheduling(GS) control techniques to a floating offshore wind turbine on a barge platform for above rated wind speed cases. Special emphasis is placed on the dynamics variation of the wind turbine system caused by plant nonlinearity with respect to wind speed. The turbine system with the dynamics variation is represented by a linear parameter-varying(LPV) model, which is derived by interpolating linearized models at various operating wind speeds. To achieve control objectives of regulating power capture and minimizing platform motions, both linear quadratic regulator(LQR) GS and LPV GS controller design techniques are explored. The designed controllers are evaluated in simulations with the NREL 5 MW wind turbine model, and compared with the baseline proportional-integral(PI) GS controller and non-GS controllers. The simulation results demonstrate the performance superiority of LQR GS and LPV GS controllers, as well as the performance trade-off between power regulation and platform movement reduction.  相似文献   

5.
针对三相异步电机驱动系统,提出一种基于高阶滑模速度控制器的模型预测转矩控制策略.为了降低负载扰动对系统运行性能的影响,设计一种基于二阶Super-Twisting滑模技术的速度环控制器,以代替传统PI速度控制器,并应用Lyapunov稳定性理论对其稳定性和鲁棒性进行分析,得到使速度控制系统收敛的参数范围.为了提升转矩控制精度,基于异步电机的数学模型,采用模型预测转矩控制理论,以转矩和定子磁链为控制目标设计评价函数,得到最优输出电压矢量驱动电机运行.仿真结果表明,所提出的控制方法能有效提升系统对负载扰动的鲁棒性,并有效降低转矩波动,使电机具有良好的动态和静态运行性能.  相似文献   

6.
A new equivalent transfer function (ETF) parameterization algorithm to incorporate the loop interaction effect into the design of multi-loop PI controllers for high dimensional multivariable processes is presented in this paper. The design scheme consists of two stages. In the first, by exploiting the relationship between the equivalent closed-loop transfer function and the inverse of open-loop transfer function, the analytical expression of ETF is derived. In the second stage, based on the ETF, controller parameters for each loop are determined by utilizing the existing PI tuning rules and the simple internal model control method. The proposed ETF parameterization algorithm is more accurate and reasonable compared to the conventional ETF model approximation methods. Furthermore, the advantage of the multi-loop PI controller designed by the proposed ETF is more significant when applied to higher dimensional processes with complicated interaction modes. Several typical industrial process examples show the well-balanced and robust response with the minimum integral absolute error.  相似文献   

7.
In this paper, two fractional order proportional integral controllers are proposed and designed for a class of fractional order systems. For fair comparison, the proposed fractional order proportional integral (FOPI), fractional order [proportional integral] (FO[PI]) and the traditional integer order PID (IOPID) controllers are all designed following the same set of the imposed tuning constraints, which can guarantee the desired control performance and the robustness of the designed controllers to the loop gain variations. This proposed design scheme offers a practical and systematic way of the controllers design for the considered class of fractional order plants. From the simulation and experimental results presented, both of the two designed fractional order controllers work efficiently, with improved performance comparing with the designed stabilizing integer order PID controller by the observation. Moreover, it is interesting to observe that the designed FO[PI] controller outperforms the designed FOPI controller following the proposed design schemes for the class of fractional order systems considered.  相似文献   

8.
Finite‐state model predictive control (FS‐MPC) has been widely used for controlling power converters and electric drives. Predictive torque control strategy (PTC) evaluates flux and torque in a cost function to generate an optimal inverter switching state in a sampling period. However, the existing PTC method relies on a traditional proportional‐integral (PI) controller in the external loop for speed regulation. Consequently, the torque reference may not be generated properly, especially when a sudden variation of load or inertia takes place. This paper proposes an enhanced predictive torque control scheme. A Takagi‐Sugeno fuzzy logic controller replaces PI in the external loop for speed regulation. Besides, the proposed controller generates a proper torque reference since it plays an important role in cost function design. This improvement ensures accurate tracking and robust control against different uncertainties. The effectiveness of the presented algorithms is investigated by simulation and experimental validation using MATLAB/Simulink with dSpace 1104 real‐time interface.  相似文献   

9.
This paper presents a comparison study of different control schemes for grid‐connected three phase two‐level power converters. All control strategies adopt the double‐loop control structure which consists of voltage regulation loop and instantaneous power tracking loop. In the external loop, voltage regulation loop, PI, fuzzy PI, adaptive controllers and PI controller plus extended state observer (ESO) are utilized to regulate the output voltage. The merits, drawbacks and design procedures of four methods are compared, investigated and analyzed. The second order sliding mode (SOSM) controllers are applied into the internal loop, instantaneous power tracking loop, to drive the active power and reactive power tracking their set points. The performance differences of these control strategies are compared through the real simulation.  相似文献   

10.
The interactions between input/output variables are a common phenomenon and the main obstacle encountered in the design of multi-loop controllers for interacting multivariable processes. In this study, a novel method for the independent design of multi-loop PI/PID controllers is proposed. The idea of an effective open-loop transfer function (EOTF) is first introduced to decompose a multi-loop control system into a set of equivalent independent single loops. Using a model reduction technique, the EOTF is further approximated to the reduced-order form. Based on the corresponding EOTF model, the individual controller of each single loop is then independently designed by applying the internal model control (IMC)-based PID tuning approach for single-input/single-output (SISO) systems, while the main effects of the dynamic interactions are properly taken into account. Several illustrative examples are employed to demonstrate the effectiveness of the proposed method.  相似文献   

11.
The paper presents an application of the Rosenbrock inverse-Nyquist-array method in the design of PI controller for a multivariable control system. The proposed grapho-analytical procedure enables all controller parameters to be readily, determined when an application of conventional PI controllers within the control loops of multivariable control system yields a good general performance. The incorporation of an integral action term to each loop of the control system improves the system accuracy eliminating any steady-state error, when step changes in the reference values of the control loops are employed. For purpose of illustration of the design technique, the example based on a model of a 30-plate distillation column is considered.  相似文献   

12.
The paper investigates applicability of different artificial intelligence (AI) techniques in the design of a speed controller for electric drives. A speed-sensorless drive system is considered. A controller structure consisting of a load torque observer, a speed estimator and a speed predictor is developed. Next, different AI based approaches to speed controller design are investigated. The speed controllers based on (1) feed-forward neural network, (2) neuro-fuzzy network, and (3) self-organising Takagi–Sugeno (TS) rule based model are designed. A comparative analysis of the drive behaviour with these three types of AI based speed controllers is performed. In addition, a comparison is made with respect to the drive performance obtained with a conventional optimised PI controller. A detailed simulation study of a number of transients indicates that the best performance, in terms of accuracy and computational complexity, is offered by the self-organising Takagi–Sugeno controller. The controllers are developed and tested for a plant comprising a variable-speed separately excited DC motor.  相似文献   

13.
Design of robust gain-scheduled PI controllers for nonlinear processes   总被引:1,自引:0,他引:1  
Gain-scheduling has proven to be a successful design methodology in many engineering applications. However, in the absence of a sound theoretical analysis, these designs come with no guarantees of robust stability, performance or even nominal stability of the overall gain-scheduled deign.This paper presents such an analysis for one type of nonlinear gain-scheduled control system based on the process input for nonlinear chemical processes. A methodology is also proposed for the design and optimization of the robust gain-scheduled PI controller. Conditions which guarantee robust stability and performance are formulated as a finite set of linear matrix inequalities (LMIs) and hence, the resulting problem is numerically tractable. Issues of modeling error and input-saturation are explicitly incorporated into the analysis. A simulation study of a nonlinear continuous stirred tank reactor (CSTR) process indicates that this approach can produce efficient sub-optimal robust gain-scheduled controllers.  相似文献   

14.
研究基于侵入与不变流形(I&I)自适应方法和非线性干扰观测器(NDO)的可逆冷带轧机速度张力系统耗散Hamilton控制问题。首先采用I&I自适应方法估计系统的摄动参数;其次,通过预反馈建立系统速度张力外环的耗散Hamilton模型,并利用互联和阻尼配置以及能量整形方法设计耗散Hamilton控制器;再次,选用NDO对系统电流内环的外扰进行观测,并引入设计的积分滑模控制器中进行补偿;最后将该方法应用于某1422 mm可逆冷带轧机速度张力系统中进行仿真,结果验证了所提出方法的有效性。  相似文献   

15.
A novel inner loop sliding mode current control scheme for induction motor speed drives is proposed in this paper. The controller design is based on the nonlinear mathematical model of an induction motor in a coordinate system oriented along the rotor flux. The parameters of the PI speed controller are taken into consideration in the inner loop sliding mode current control. Rigorous stability verification for the overall system is provided in this paper. The chattering in sliding mode control is attenuated using the reaching law design method. The experimental results show that the proposed approach exhibits robust tracking performance in the presence of motor parameter variations and load disturbances.  相似文献   

16.
In this paper, an adaptive two degrees of freedom (2Dof) PI controller based on a just-in-time learning (JITL) method is proposed for predictive speed control of permanent magnet synchronous linear motor (PMSLM). Firstly, to guarantee the high identification accuracy and high real-time performance simultaneously, an improved JITL method is proposed to estimate the controlled model parameters of speed control system. Then, based on the dynamic controlled model, a simplified generalized predictive control (GPC) supplies a 2Dof proportional integral (PI) controller with suitable control parameters to follow a sinusoid-type speed command in operating conditions. The main motivation of this paper is the extension of the predictive controller to replace traditional PI controller in industrial applications. Finally, the efficacy and usefulness of the proposed controller are verified through the experimental results.  相似文献   

17.
Pseudo-derivative feedback with feed-forward gain (PDFF) combines the advantages of proportional-integral (PI) and pseudo-derivative feedback (PDF) controllers. However, PDFF responds more slowly to a command than does PI. To increase the speed of response of the PDFF controller, this work presents a PDFF with moving average errors control. A low-pass IIR filter path for errors compensation that accelerates the slow response is added to a PDFF control loop. A fuzzy inferencer is utilized to adjust the feed-forward gain and integral gain of the PDFF controller to allow closed-loop poles of the transfer function to be properly placed to improve load torque disturbance rejection capability. Simulated and experimental results reveal that the response and load disturbance rejection ability of the fuzzy PDFF-IIR controller are better than those of the traditional PDFF controller.  相似文献   

18.
This paper proposes a new methodology to design fractional integral controllers combined with Smith predictors, which are robust to high frequency model changes. In particular, special attention is paid to time delay changes. These controllers show also less sensitivity to high frequency measurement noise and disturbances than PI or PID controllers. This methodology is applied to design controllers for water distribution in a main irrigation canal pool. Simulated results of standard PI and PID controllers plus a Smith predictor, and the controller developed in this paper are compared when applied to the dynamical model of a real main irrigation canal pool showing that our controller exhibits better and more robust features than these. Moreover our controller is compared with other more complex control techniques as predictive control and robust H controllers, exhibiting better or similar performances than these.  相似文献   

19.
异步电机矢量控制系统的设计及仿真研究   总被引:2,自引:0,他引:2  
研究异步电机控制系统优化问题,系统要求稳定性和抗干扰性能。传统的矢量控制中速度调节器和电流调节器采用PI调节器,依据PI调节器特性,在控制过程中速度响应会出现超调。为了解决上述问题,提出了一种异步电机矢量控制中速度调节器的设计方法,以抑止异步电机矢量控制中速度响应的超调和增强抗扰性为目的。异步电机矢量控制采用转子磁场定向实现解耦,并采用速度环、电流环双环控制方法,根据内模控制原理,设计用一种速度调节器,取代常规的PI调节,成功解决了转速的超调和负载扰动对电机转速的影响。仿真结果表明,提高了响应特性,为优化设计提供了参考。  相似文献   

20.
In this work, a concurrent proportional integral (PI) controller design technique is addressed for indirect vector controlled induction motor (IVCIM). For this, a full‐order induction motor (IM) model is employed that includes the stator current dynamics. The current‐loop proportional integral (PI) controllers are tuned to use the attributes of such dynamics. The robustness against load torque and rotor resistance variations are incorporated in the design problem. This method is implemented using a static output feedback scheme in which iterative linear matrix inequality (ILMI) based H control technique is applied. The simulation and experimental comparison with existing designs show the superiority of proposed method and practical interest for industry use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号