首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对风力机系统在最大功率点跟踪(MPPT)阶段易受风速等不确定因素的影响,为了进一步提高风力机的风能捕获效率,本文在滑模控制的基础上提出了一种互补滑模控制方法.首先,建立了含有干扰项的风力机系统的线性化模型,采用广义滑模面与互补滑模面相结合的方法设计了互补滑模控制器,并在理论上证明了此控制方法能够有效保证风力机转速跟踪误差的收敛性,且能提高转速跟踪精度.其次,采用风力机专业仿真软件FAST对美国可再生能源实验室(NREL)的600 kW风力机进行了仿真实验,结果表明本文所提出的控制方法不但能提高风力机的风能捕获效率,而且能有效减小转速跟踪误差.最后,将本文所提方法与现有常见的几种控制方法相比较发现:风力机系统在互补滑模控制策略下,具有更高的风能捕获效率和更小的转速跟踪误差.  相似文献   

2.
A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine’s load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software – Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5 MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.  相似文献   

3.
Wind energy has been widely applied in power generation to alleviate climate problems. The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream. Wind farm layout optimization (WFLO) aims to reduce the wake effect for maximizing the power outputs of the wind farm. Nevertheless, the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm, which severely affect power conversion efficiency. Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios. Thus, a chaotic local search-based genetic learning particle swarm optimizer (CGPSO) is proposed to optimize large-scale WFLO problems. CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms. The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance, stability, and robustness. To be specific, a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local. It improves the solution quality. The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.   相似文献   

4.
Wind energy is recognized worldwide as cost-effective and environmentally friendly and is among the fastest-growing sources of electrical energy. To further decrease the cost of wind energy, wind turbines are being designed at ever larger scales, which is challenging due to greater structural loads and deflections. Large-scale systems such as modern wind turbines increasingly require a control co-design approach, whereby the system design and control design are performed in a more integrated fashion. We overview a two-bladed downwind morphing rotor concept that is expected to lower the cost of energy at wind turbine sizes beyond 13 megawatts (MW) compared with continued upscaling of traditional three-bladed upwind rotor designs. We describe an aero-structural-control co-design process that we have used in designing such extreme-scale wind turbines, and we discuss how we were able to achieve a 25% reduction in levelized cost of energy for our final turbine design compared to a conventional upwind three-bladed rotor design.  相似文献   

5.
This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power. Wind turbines are modeled as a two-mass drive-train system with generator torque control. Based on the obtained wind turbine model, variable speed control schemes are developed. Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture. Due to the difficulty of torsional angle measurement, an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking. The effectiveness of the proposed control methods is illustrated by simulation results.   相似文献   

6.
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.  相似文献   

7.
Control of variable speed wind turbines: Dynamic models   总被引:1,自引:0,他引:1  
Owing to concern over the environment, there is much interest in renewable sources of electrical power generation, of which one of the most promising is wind power. Wind turbines exploit this energy source to directly generate electrical power. There are essentially two types of windturbines, namely constant speed and variable speed machines. The purpose of this paper is to investigate the dynamics of variable speed wind turbines and determine suitable models to support the control design task. A basic but widely used dynamic representation of variable speed wind turbines and the corresponding models of the control plant dynamics are initially discussed. More detailed, yet still simple models, are derived separately for the rotor aerodynamics, the drive-train dynamics and the power generation unit dynamics before being combined to form the complete model of the wind turbine dynamics. The resulting combined model, in addition to supporting the control design task, enables the extent, to which the basic models adequate represent the wind turbine, to be assessed. It is concluded that the basic models of variable speed wind turbines are not adequate and do not exhibit all the relevant aspects of the dynamics necessary to support the control design.  相似文献   

8.
风力发电机的功率及其效率特性对风力机气动特性有很大影响。针对我国兆瓦级风力机风轮叶片研究中存在的问题,制作了1.5MW风轮叶片模型并根据相关国标进行了实验室及车载测试,根据测试数据风力发电机组的效率特性曲线及功率特性曲线,最后通过数据分析,提出了叶片模型的改进方案。  相似文献   

9.
The present paper introduces a coupled Navier-Stokes/Vortex-Panel solver for the computational study of incompressible high Reynolds number flow around horizontal axis wind turbines. The Navier-Stokes solver is confined to the near-field around one wind turbine blade; the Vortex-Panel method accounts for the far-field of a two-bladed rotor. A robust coupling between both methods is achieved through the spanwise distribution of bound circulation determined by Stokes’ theorem. The coupled solver reduces both artificial dissipation and computational cost compared to a full-domain Navier-Stokes analysis. Results obtained for inviscid and attached viscous flow around an optimal wind turbine blade are compared to a vortex model based on strip theory. Good agreement is found between both models that serves as a validation of the coupled solver for future applications to wind turbines.  相似文献   

10.
由于风速的随机性、不稳定性及气动效应的影响,使得风力发电机组变桨距控制系统具有非线性、参数时变性、强耦合等特点,难于实现高精度控制,导致风电机组输出电能质量较差。为了改善系统在恒功率输出运行区域内的动态性能,分析了风电机组变桨距控制系统的现状,建立了整个风电机组模型,提出了优化的变桨距控制策略,并设计了基于模糊控制的变桨距控制器。仿真结果表明,独立变桨距控制技术的控制效果比统一变桨距好,实现了风力机各叶片的优化独立变桨距控制,优化了风力发电系统在超过额定风速时的恒功率控制,具有抗干扰能力强、控制精度高的特点。  相似文献   

11.
针对风速的随机性及不确定性的特性,以及大型变速变桨风电机组(Variable Speed Variable Pitch Wind Turbine,VSVP)在桨距控制过程中,由于其大转动惯量造成发电机转速响应延迟的问题,提出了一种基于卡尔曼滤波算法的风轮气动转矩观测器,并将气动转矩与参考转矩偏差作为控制器输入以及时响应外界风速变化.针对变桨过程中普遍存在的塔架前后振动和传动链扭转振动问题,提出了通过在原有控制策略的基础上采用加速度反馈和阻尼滤波的方式得到附加桨距角和转矩,从而抑制振动的控制方式.利用Bladed编制了外部控制嚣对某2MW风力发电机组进行仿真,验证了该算法的可靠性,将所提出的控制策略应用于MW级风力发电机组,能够改善桨距控制的动态特性,并有效降低关键部位疲劳载荷.  相似文献   

12.
Wind turbines are complex dynamic systems forced by stochastic wind disturbances, as well as gravitational, centrifugal, and gyroscopic loads. Since their aerodynamics are nonlinear, wind turbine modelling is thus challenging. Moreover, accurate models should contain many degrees of freedom to capture the most important dynamic effects. Therefore, the design of control algorithms for wind turbines should account for these complexities. However, these algorithms must capture the most important turbine dynamics without being too complex and unwieldy. The main purpose of this study is thus to give two examples of viable and practical designs of control schemes with application to a wind turbine prototype model. Extensive simulations on the benchmark process and Monte-Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared with other different approaches, in order to evaluate advantages and drawbacks of the considered solutions. Finally, Hardware-In-the-Loop simulations serve to highlight the potential application of the proposed control strategies to real wind turbines.  相似文献   

13.
The main objective of this paper is to design a dynamic reference trajectory based on hysteresis to avoid saturation in controlled wind turbines. Basically, the torque controller and pitch controller set‐points are hysteretically manipulated to avoid saturation and drive the system with smooth dynamic changes. Simulation results obtained from a 5MW wind turbine benchmark model show that our proposed strategy has a clear added value with respect to the baseline controller (a well‐known and accepted industrial wind turbine controller). Moreover, the proposed strategy has been tested in healthy conditions but also in the presence of a realistic fault where the baseline controller caused saturation to finally conduct to instability.  相似文献   

14.
The inclusion of smart devices in wind turbine rotor blades could, in conjunction with collective and individual pitch control, improve the aerodynamic performance of the rotors. This is currently an active area of research with the primary objective of reducing the fatigue loads but mitigating the effects of extreme loads is also of interest. The aerodynamic loads on a wind turbine blade contain periodic and non-periodic components and one approach is to consider the application of iterative learning control algorithms. In this paper, the control design is based on a simple, in relative terms, computational fluid dynamics model that uses non-linear wake effects to represent flow past an airfoil. A representation for the actuator dynamics is included to undertake a detailed investigation into the level of control possible and on how performance can be effectively measured.  相似文献   

15.
The effects of blade tip modifications on a wind turbine blade are studied with the design code developed previously, by taking into account the curving of the blade axis in or out of the plane of rotation. This is an area of interest for manufacturers of wind turbines to improve the aerodynamic performance, as has been done with airplane wings and also to use the swept tips to unload the blades during wind gusts by changing the local incidences with a nose-down torsional moment.The vortex model, based on Goldstein approach, treats each blade as a lifting line generating a helicoidal vortex sheet, supporting the trailed vorticity along prescribed helices whose pitch is determined to satisfy the wake equilibrium condition. As the lifting line is given sweep in the plane of rotation or dihedral in the plane containing the blade and the rotor axis, the induced velocities by the bound vortex at the lifting line are no longer zero and the blade flow is also affected by the modified vortex sheet geometry, according to the Biot-Savart formula. The study is performed with a two-bladed rotor with the NREL blade as point of reference.A series of tests is carried out with the design code, comparing the design of a rotor blade with straight axis or with a ±10% (forward or backward) sweep, dihedral or winglet. Results indicate that the aerodynamic performance are in general enhanced with these tip modifications, although the trends differ between forward and backward orientations, with some nonlinear effects associated with the wake geometry.  相似文献   

16.
刘吉宏  吕跃刚  徐大平 《计算机仿真》2010,27(3):267-270,313
在空气动力学原理基础上建立了变浆距风力发电机组非线性数学模型,以此为基础采用基于动态逆的非线性内模控制方法设计了风力发电机组在额定风速以上工作时的桨距角鲁棒控制律,以使输出功率维持在额定值附近。设计是针对风力机的非线性数学模型进行的,克服了基于局域近似线性化模型设计方法的缺点,适应工况点大范围变动的情形,而且对系统参数摄动具有良好的鲁棒性,求解过程相对比较简单。以一台额定功率为300kW的实际风力发电机组为实例进行了对比仿真,结果表明了该方法能够满足控制要求,具有较好的动、静态特性和鲁棒性。  相似文献   

17.
A detailed experimental and numerical investigation of the unsteady interaction of secondary flow vortices in turbine endwall region was performed with the effect of upstream periodic wakes. The flow field was investigated respectively in a linear turbine cascade and a turbine rotor. The study revealed the physical mechanisms of unsteady interaction between upstream wake and secondary vortices. The influence of the upstream wake on the performance of turbine endwall region was also discussed.The flow field at the exit of the turbine blade row showed a decrease in passage vortex strength and loss due to the upstream wake transport. Two interaction mechanisms are proposed whereby passage vortex loss decreases. They are the upstream wake-pressure side leg of the horseshoe vortex interaction and the upstream wake-passage vortex interaction. The transport of upstream wake can suppress the development of pressure side leg of the horseshoe vortex and passage vortex because of the “negative jet” influence of the wake.  相似文献   

18.
变速风电机组在额定风速以下应用最大功率点跟踪实现最大化风能捕获. 然而, 大惯量风电机组在面对快 速波动的湍流风速时, 因转速调节慢而难以保持运行于最大功率点. 本文研究进一步发现, 平均转速跟踪误差与整 体的风能捕获效率并非单调关系, 这使得当前以减小转速跟踪误差为目标的控制器设计难以有效提升风电机组的 发电效率. 为此, 本文以提升风能捕获效率(而非减小转速跟踪误差)为目标, 提出一种基于参考输入优化的风电机 组最大化风能捕获方法. 考虑到参考转速对风能捕获效率的复杂影响难以准确建模, 本文借助深度确定性策略梯度 (DDPG)强化学习算法实现参考输入优化. 仿真结果表明该方法能够有效提升湍流风下变速风电机组的风能捕获效 率.  相似文献   

19.
将附加阻尼控制SVC应用于兆瓦级双馈型风电场并网系统,在此基础上研究了系统的暂态过程.首先建立了双馈风电机组的动态模型,水轮发电机组以及附加阻尼控制SVC的数学模型,然后仿真研究了双馈型风电场并网以后对区域系统暂态过程的影响,对比分析了风电场接入和故障情况下采用普通SVC和附加阻尼控制SVC的作用和效果,仿真结果验证了建立模型和采取方法的正确性和有效性.  相似文献   

20.
There are situations in which wind turbines must curtail their power, i.e. produce less power than is available from the wind. In such cases the wind turbine power can be increased or decreased if required. This gives an opportunity to strike a balance between varying power production and reducing wind turbine structural loading. To that end, a supervisory controller is designed that issues power references to the wind turbine and can be easily installed on already operational wind turbines. The wind turbine with a supervisory controller produces the required mean power, while reducing wind turbine loads by adding power variations. The extensive, realistic simulations are done to evaluate the influence of the proposed controller on the fatigue loads, extreme loads and the overall wind turbine operation. The results indicate that a significant reduction of fatigue loads can be achieved, which can increase the operating life of the structure. Furthermore, the proposed supervisory controller can be utilized as the main building block of a wind farm controller, which meets the grid code requirements and can be easily installed on very large wind farms due to minimal requirements on the farm-wide communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号