首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
The internal geometry of stitched uniaxial multiply carbon-fiber preforms is investigated experimentally. The microstructure is parameterized by such four introduced parameters as distortion length, distortion width, minor axis and major axis. The quantificational measurements are performed for these parameters under different stitch densities and different stitch threads. A theoretical model, called fiber distortion model, is developed to describe the spatial distribution of in-plane fiber misalignment angle and inhomogeneous fiber volume fraction induced by stitching.  相似文献   

2.
To obtain useful flow simulations to support mould design, it is necessary to use accurate permeability values. In the work described here, the permeability of carbon fibre preforms with and without stitches was measured. A preform is a multilayer package of material ready to be impregnated using liquid transfer moulding technology. The main parameters which vary in the preforms are the stitching pattern, meaning the distance between the stitch rows through the preform, the stitching thread tension and the stacking sequence of the layers. The permeability measurements were carried out using a continuous, two-dimensional radial-flow measurement technique. The measuring device consists of an aluminium mould with integrated dielectric sensors (surface treated to prevent short circuit). The sensor system relies on the change in the dielectric properties of the material as saturation takes place. The results showed that stitching has a positive influence on the permeability. The stacking sequence was found to be the most effective way to influence permeability.  相似文献   

3.
A finite element (FE) model using coupling continuum shell elements and cohesive elements is proposed to simulate the compression after impact (CAI) behaviour and predict the CAI strength of stitched composites. Continuum shell elements with Hashin failure criterion exhibit the composite laminate damage behaviour; whilst cohesive elements using traction-separation law characterise the laminate interfaces. Impact-induced delamination is explicitly modelled by reducing material properties of damaged cohesive elements. Computational results have demonstrated the trend of increasing CAI strength with decreasing impact-induced delamination area. Spring elements are introduced into the model to represent through-thickness stitch thread in the composite laminates. Results in this study validate experimental finding that CAI strength is improved when stitching is incorporated into the composite structure. The proposed FE model reveals good CAI strength predictions and indicates good agreement with experimental results, making it a valuable tool for CAI strength prediction of stitched composites.  相似文献   

4.
An impregnation model has been developed to evaluate the infiltration phenomena that occur during a novel near net shape preforming method. This process comprises automated deposition of thermoplastic resin and unidirectional (UD) carbon fibres to a pre-programmed stacking sequence, thereby forming tailored preforms for subsequent stamp-forming. Infiltration kinetics have been simulated to study the effect of different stacking scenarios, materials, and pre-consolidation routes on the novel preforming process. Isothermal infiltration of a liquid thermoplastic polymer into a compressed UD fibre bed has been examined and the experimental results have been used to validate an infiltration model based on local fluid flow in compressible porous media. This enables simulation of infiltration in alternating matrix film and fibre layers, relating pressure, time, and temperature with the local fibre volume fraction, pressure, and liquid and solid velocities in the stacked material. For a given set of processing conditions, the model fibre volume fraction distribution prediction enables the optimum matrix stacking layer thicknesses to be determined. It was shown that infiltration is inhibited above a limiting pressure which leads to increased fibre bed compaction and hence decreased permeability.  相似文献   

5.
Modern flat knitting machines using high performance yarns are able to knit fabrics including the reinforcement yarns arranged differently into knit structures. Due to their improved mechanical properties, composites made from multi-layer knit fabrics show great potential in lightweight applications. This paper reports on the development of flat knitted multi-layer textile preforms for high performance thermoplastic composites using hybrid yarns made of glass (GF) and polypropylene (PP) filaments. Such textile preforms with different reinforcements were used to consolidate into 2D thermoplastic composites. Moreover, the mechanical properties of these composites were studied. The mechanical properties of 2D composites were found to be greatly affected by different arrangements of reinforcement yarns. The integration of reinforcement yarns as biaxial inlays (warp and weft yarns) is found to be the best solution for knitting, whereas tuck stitch shaped and unidirectional arranged reinforcements offer also promising application possibilities.  相似文献   

6.
A genetic algorithm is coupled with a finite element model to optimise the arrangement of constraints for a composite press-forming study. A series of springs are used to locally apply in-plane tension through clamps to the fibre preform to control material draw-in. The optimisation procedure seeks to minimise local in-plane shear angles by determining the optimum location and size of constraining clamps, and the stiffness of connected springs. Results are presented for a double-dome geometry, which are validated against data from the literature. Controlling material draw-in using in-plane constraints around the blank perimeter is an effective way of homogenising the global shear angle distribution and minimising the maximum value. The peak shear angle in the double-dome example was successfully reduced from 48.2° to 37.2° following a two-stage optimisation process.  相似文献   

7.
Shear behaviour of a glass fibre/polypropylene composite is characterized over a wide range of strain rates and forming temperatures using the bias extension test. A temperature- and rate-dependent material model is here introduced to describe the observed behaviour. The model is based on a continuous approach and formulated considering a stress objective derivative based on the warp and weft yarns rotation. The effects of temperature and strain rate on the shear behaviour are analysed via bias extension test simulations. Temperature change in the sheet during forming was measured. This data is used to model cooling during forming. Isothermal and transient forming simulations were performed in order to show the effects of temperature and forming speed on the obtained shear angle distribution. It was found that at low forming speeds the assumption of isothermal forming is not valid anymore since the cooling of the sheet affects the shear behaviour.  相似文献   

8.
The composite textile reinforcement draping simulations allows the conditions for a successful process to be determined and, most importantly, the positions of the fibres after forming to be known. This last point is essential for the structural computations of the composite part and for resin injection analyses in the case of LCM processes. Because the textile composite reinforcements are multiscale materials, continuous (macro) approaches and discrete (meso) approaches that model the yarns have been developed. The finite element that is proposed in this paper for textile fabric forming is composed of woven unit cells. The mechanical behaviour of these is analyzed by 3D computations at the mesoscale regarding biaxial tensions and in plane shear. The warp and weft directions of the woven fabric can be in arbitrary direction with respect to the direction of the element side. This is very important in the case of multi-ply deep drawing and when using remeshing. The element is efficient because it is close to the physic of the woven cell while avoiding the very large number of unknowns in the discrete approach. A set of validation tests and forming simulations on single ply and multi-ply are presented and show the efficiency of the approach. In particular the importance of the in-plane shear behaviour is emphasized in the case of a draping on a cube.  相似文献   

9.
This paper presents a detailed finite element (FE) analysis aiming to investigate numerically the impact deformation of multi-ply fabric panels with angled plies. The purpose of the investigation described in this paper is to study numerically the way in which the multi-ply panels deform and to identify the energy absorption in different panel constructions. The FE model was created using ABAQUS to simulate the transverse impact of a projectile onto various woven fabric panels. Influencing factors such as the impact velocity, panel construction and the number of plies are taken into account in the FE simulations. The numerical predictions show that the orientation of plies significantly affects the energy-absorbing capacity of the multi-ply fabric panels. The angled panels always increase the energy-absorbing capacity, compared with the aligned panel, by as much as 20%, depending on the number of plies in the panel. In addition, the stacking sequence of oriented plies also plays an important role in absorbing the energy. For the multi-ply fabric panel with large numbers of plies, there is an optimised sequence of plies which can maximise the energy-absorbing capacity of the panel. An important aspect of the work is validation of the numerical technique. It is shown that the FE predictions are highly consistent with the experimental study [1].  相似文献   

10.
A pre-consolidated thermoplastic advanced composite cross-ply sheet comprised of two uniaxial plies orientated at 0/90° has been thermoformed using tooling based on the double-dome bench-mark geometry. Mitigation of wrinkling was achieved using springs to apply tension to the forming sheet rather than using a friction-based blank-holder. The shear angle across the surface of the formed geometry has been measured and compared with data collected previously from experiments on woven engineering fabrics. The shear behaviour of the material has been characterised as a function of rate and temperature using the picture frame shear test technique. Multi-scale modelling predictions of the material’s shear behaviour have been incorporated in finite element forming predictions; the latter are compared against the experimental results.  相似文献   

11.
结构材料喷射成形技术与雾化沉积高温合金   总被引:3,自引:0,他引:3  
喷射成形是利用快速凝固方法直接制备金属材料坯料或半成品的先进材料制造技术 ,喷射沉积高温结构材料的冶金性能好、生产效率高、成本低 ,因而在近几年得到了迅速发展 .本项研究的主要目的是要通过喷射成形工艺参数的调整、最大限度地直接减少喷射成形坯中的孔隙度 ,进而得到优质坯料 .利用优化的雾化喷射沉积技术制备了多种高温合金沉积坯 ,沉积坯整体致密、晶粒细小、组织均匀、无宏观偏析、含气量低、力学性能提高 .还简要地比较了喷射成形高温合金与用常规铸锭冶金工艺和粉末冶金工艺制备高温合金的异同 ;总结了航空材料研究院喷射成形高温材料近年来的研究状况 ,包括专用高温材料喷射成形装置和技术及其应用 .  相似文献   

12.
Profile forming of wood-strand composites requires an understanding of the forming characteristics of the preforms prior to curing. The profile forming behavior of the pre-pressed preforms was studied with single-curvature V-bending and the thickness recovery of the preforms was measured. Three failure types were identified based on the primary failure mechanisms in V-bending: buckling and shear slip. As an important indicator of the forming defects (thinning and buckling), the initial failure in V-bending was predicted with a strength-based model. The effects of preform conditions on forming characteristics were examined with a response surface model. An understanding of the relationship between preform characteristics and potential defects during profile forming prior to the final curing stage will facilitate development of the underpinning science of profile forming of wood-strand composites.  相似文献   

13.
An interpenetrating composite fabricated by squeeze-casting a eutectic aluminium-silicon alloy into a porous alumina preform is studied in this work. The preform was fabricated by pyrolysis of cellulose fibres used as pore forming agent, pressing of the green ceramic body and subsequent sintering of alumina particles. The resulting preform had both micropores within the ceramic walls and macropores between those walls, which were infiltrated by the liquid metal. Composites with alumina contents varied in the range of 18-65 vol.% were studied. Three longitudinal and three shear elastic constants of the composites were determined using ultrasound phase spectroscopy on rectangular parallelepiped samples. Complete stiffness matrix of one sample was determined by modifying the sample geometry by cutting at the corners of the sample and subsequent ultrasonic measurements. All composites exhibit a moderately anisotropic behavior, which can be attributed to a non-random pore orientation distribution caused by uni-axial pressing of the preforms prior to sintering. The experimental results are compared with several theoretical micromechanical models.  相似文献   

14.
A predictive approach to modelling the forming of viscous textile composites has been implemented in two finite element codes; Abaqus Standard™ and Abaqus Explicit™. A multi-scale energy model is used to predict the shear force–shear angle–shear rate behaviour of viscous textile composites, at specified temperatures, using parameters supplied readily by material manufacturers, such as fibre volume fraction, weave architecture and matrix rheology. The predictions of the energy model are fed into finite element simulations to provide the in-plane shear properties of two different macro-scale constitutive models implemented in the finite element codes. The manner of coupling predictions of the multi-scale energy model with the macro-scale models is shown to affect the rate-dependent material response in the simulations. These coupling methods are evaluated using picture frame test simulations.  相似文献   

15.
The present investigation deals with designing Fe, Fe–P binary and Fe–P–Si ternary alloys produced by an in-house developed powder metallurgical technique based on ‘Hot Powder Preform Forging’. Proper soaking of preforms at high temperature (1050 °C) eliminates iron-phosphide eutectic and brings entire phosphorus into solution in iron. Attempting hot forging thereafter completely eliminates hot as well as cold shortness and thereby helps to form these preforms (alloys) into very thin sheets of 0.5 mm. The use of costly hydrogen atmosphere during sintering has been eliminated by the addition of carbon as a reducing agent to form CO gas within the compact by reacting with oxygen of iron powder particles. The glassy ceramic coating applied over the compact serves as a protective coating to avoid atmospheric oxygen attack over the compact held at high temperature. These alloys so formed were subjected to density examination at various stages. Microstructural study has been carried out to estimate the grain size, volume percentage of porosity in the alloys, and uniform distribution of phosphorus and silicon in an iron matrix. X-ray diffraction studies of these alloys revealed the presence of only ferrite as product phase. Addition of alloying elements such as P and Si has improved the resistivity and magnetic properties of iron. Fe–0.07C–0.2O–0.3P–0.5Si alloy showed a resistivity as high as 31.7 μΩ cm. Coercivity values of the alloys ranged from 0.51 to 1.98 Oe. The total magnetic loss of Fe–0.07C–0.2O–0.3P–0.5Si alloy was the lowest (2.03 W/kg) amongst the alloys developed owing to its high resistivity combined with its low coercivity. These alloys which are drawn to thin sheets could find their possible application in the manufacturing of transformer cores.  相似文献   

16.
A computational framework previously presented for nonlinear analysis of RC elements, has been developed for FRP strengthened RC elements in this study. With the aim of the developed model nonlinear behavior of strengthened RC elements can be simulated based on local stresses state at the crack surface considering all stress transfer mechanisms. Moreover, the local response of each component and its effect on the global behavior of the element can be obtained which is useful for proposing rational design relations. The versatility of the proposed method is verified by comparing the analytical and experimental results. Based on the analytical results, a simple relation is proposed for shear design and assessment of FRP strengthened RC elements and members. The accuracy of the proposed design relation is verified against available experimental results on FRP strengthened RC beams.  相似文献   

17.
This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.  相似文献   

18.
A rate dependent constitutive model for woven reinforced thermoplastic matrix composites at forming temperatures is proposed in this work. The model is formulated using a stress objective derivative based on the fibre rotation. Nonlinear shear behaviour is modelled as a polynomial function and the rate dependence is described using a Cowper–Symonds overstress law formulated in terms of shear angle rate. The model parameters are determined by means of bias extension tests. The applicability of the material model is validated through a forming experiment.  相似文献   

19.
Design solutions using composite laminates frequently require joining the laminates to metal. A novel approach to such bonding using a sculpted metal surface has been proposed which can be described as a combination of mechanical and adhesive bonding. Optimisation of the protrusion geometry on the sculpted metal surface has been studied numerically with the finite element method using a simplified model for the end protrusion where initial failure is observed. The angle and height of the protrusion are found to significantly affect the stress concentrations around the protrusion which initiate failure. It is predicted that the optimum angle is opposing the shear and that higher protrusions are more likely to prevent joint failure.  相似文献   

20.
A strain-based forming limit criterion is widely used in sheet-metal forming industry to predict necking. However, this criterion is usually valid when the strain path is linear throughout the deformation process [1]. Strain path in incremental sheet forming is often found to be severely nonlinear throughout the deformation history. Therefore, the practice of using a strain-based forming limit criterion often leads to erroneous assessments of formability and failure prediction. On the other hands, stress-based forming limit is insensitive against any changes in the strain path and hence it is first used to model the necking limit in incremental sheet forming. The stress-based forming limit is also combined with the fracture limit based on maximum shear stress criterion to show necking and fracture together. A derivation for a general mapping method from strain-based FLC to stress-based FLC using a non-quadratic yield function has been made. Simulation model is evaluated for a single point incremental forming using AA 6022-T43, and checked the accuracy against experiments. By using the path-independent necking and fracture limits, it is able to explain the deformation mechanism successfully in incremental sheet forming. The proposed model has given a good scientific basis for the development of ISF under nonlinear strain path and its usability over conventional sheet forming process as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号