首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymer composites are usually either stiff or tough, but seldom both. Intralayer hybrids of carbon fibre and self-reinforced polypropylene (PP) do offer the potential to achieve a unique combination of toughness and stiffness. In these hybrids, the bonding between carbon fibre prepregs and PP tapes is a crucial parameter. For a weak bonding, the 20% ultimate tensile failure strain and high penetration impact resistance of self-reinforced PP were maintained. For a strong bonding, the ultimate tensile failure strain was strongly reduced, but the flexural performance was improved. For a homopolymer PP matrix in the prepregs, the weak bonding between fibre and matrix caused the penetration impact resistance to reduce according to a linear rule-of-mixtures. For a maleic anhydride modified PP matrix however, the strong fibre–matrix bonding greatly reduced the penetration impact resistance. These results provide new insights into designing hybrid composites with a unique balance of stiffness and failure strain.  相似文献   

2.
Unidirectional (UD) carbon fibre reinforced polymers offer high specific strength and stiffness but they fail in a catastrophic manner with little warning. Gas-texturing and non-constrained annealing were used to introduce fibre waviness into UD polyamide 12 composites produced by wet-impregnation hoping to produce composites with a more gradual failure mode and increased failure strain. Both methods increased the variation of fibre alignment angle compared to the control samples. The composites containing wavy fibres exhibited a stepwise, gradual failure mode under strain controlled uniaxial tension rather than a catastrophic failure, observed in control samples. Gas-texturing damaged the fibres resulting in a decrease of the tensile strength and strain to failure, which resulted in composites with lower tensile strength and ultimate failure strain than the control composites. Non-constrained annealing of carbon fibre/PA-12 produced wavy fibre composites with ultimate failure strain of 2%, significantly higher than 1.6% of the control composite.  相似文献   

3.
Experimental results are presented which allow the hybrid effect to be evaluated accurately for thin ply carbon/epoxy–glass/epoxy interlayer hybrid composites. It is shown that there is an enhancement in strain at failure of up to 20% for very thin plies, but no significant effect for thicker plies. Hybrid specimens with thick carbon plies can therefore be used to measure the reference carbon/epoxy failure strain. The latter is significantly higher than the strain from all-carbon specimens in which there is an effect due to stress concentrations at the load introduction. Models are presented which illustrate the mechanisms responsible for the hybrid effect due to the constraint on failure at both the fibre and ply level. These results give a good understanding of how variability in the carbon fibre strengths can translate into hybrid effects in composite laminates.  相似文献   

4.
This paper presents results of the feasibility of carbon/epoxy composites (CFRP) as a future helicopter flexbeam material. Torsional behaviors of unidirectional CFRP and glass/epoxy composites (GFRP) with the same resin matrix were investigated. The initial torsional rigidity of CFRP was almost identical to that of GFRP. The torsional rigidities calculated using finite element analyses (FEA) agreed with the experimental results: the torsional rigidities are governed mainly by the material’s shear stiffness. Torsion fatigue tests were also conducted by controlling the angle of twist of the sinusoidal wave under a constant tensile axial load. No catastrophic failure occurred with either GFRP or CFRP, although decreased amplitudes of torque and torsional rigidities were observed according to the number of cycles. Results of X-ray CT inspections and numerical calculation by FEA revealed that degradation of a torsional rigidity is caused mainly by splitting crack propagation along the fiber direction. The torsion fatigue life of CFRP was superior to that of GFRP. Consequently, results confirmed that CFRP exhibits excellent properties as a torsional element of a helicopter flexbeam in terms of torsional rigidity and tension–torsion fatigue behaviors.  相似文献   

5.
Carbon nanotubes were grown by chemical vapor deposition (CVD) on different carbon fibre substrates namely, unidirectional (UD) carbon fibre tows, bi-directional (2D) carbon fibre cloth and three dimensional (3D) carbon fibre felt. These substrates were used as the reinforcement in phenolic resin matrix to develop hybrid CF–CNT composites. The growth morphology and other characteristics of the as grown tubes were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal gravimetry (TGA) which confirmed a copious growth of multiwalled carbon nanotubes (MWNTs) on these substrates. The mechanical properties of the hybrid composites was found to increase with the increasing amount of deposited carbon nanotubes. The flexural strength (FS) improved by 20% for UD, 75% for 2D and 66% for 3D hybrid composites as compared to that prepared by neat reinforcements (without CNT growth) under identical conditions. Flexural modulus (FM) of these composites also improved by 28%, 54% and 46%, respectively.  相似文献   

6.
In this paper we present a numerical and experimental study on the overlay repair of scratch damage in carbon-fiber/epoxy composite laminates. The scratch damage severs several load bearing plies and results in a lack of symmetry in an originally symmetric multidirectional laminate. The ply-by-ply p-version finite element model is used to investigate the effects of the repair patch variables on the overall efficiency of the repair procedure and the lamina level stress states. The results show that interlaminar crack propagation in the direction parallel to the surface can be retarded with careful selection of repair parameters.  相似文献   

7.
Efficiently joining materials with dissimilar mechanical and thermal properties is fundamental to the development of strong and lightweight load-bearing hybrid structures particularly for aerospace applications. This paper presents a ply-interleaving technique for joining dissimilar composite materials. The load-carrying capacity of such a joint depends strongly on several design parameters such as the distance between ply terminations, the spatial distribution of ply terminations, and the stiffness and coefficients of thermal expansion of the composites. The effects of these factors on the strength of quasi-isotropic hybrid carbon/glass fibre composite are investigated using combined experimental, analytical and computational methods. Through fractographic analyses significant insights are gained into the failure mechanism of the hybrid joints, which are then used to aid the development of predictive models using analytical and high fidelity computational methods. To characterise the interaction between transverse matrix cracking and delamination, continuum damage mechanics model and cohesive zone model are employed. The predictions are found to correlate well with experimental data. These modelling tools pave the way for optimising hybrid joint concepts, which will enable the structural integration of dielectric windows required for multifunctional load-bearing antenna aircraft structures.  相似文献   

8.
Moisture absorption of unidirectional hybrid composites   总被引:1,自引:0,他引:1  
Unidirectional hybrid composite rods were conditioned in humid air to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (M). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60 °C and 85% relative humidity (RH). Property retention and reversibility of property degradation were also measured. Microscopic inspection revealed no evidence of damage.  相似文献   

9.
Halloysite nanotubes (HNT) were effectively incorporated into epoxy resin and used for infusion of carbon fibre textiles, resulting in epoxy/halloysite nanotube/carbon fibre (EP/HNT/CF) multi-scale composites. The distribution of nanotubes in the composites was examined by SEM. The thermomechanical properties of the composites were characterized by dynamic mechanical analyser (DMA). A 25% enhancement was recorded for the storage modulus of EP/HNT/CF composite in the glassy state. Moreover, the Tg of the laminates increased with the addition of HNT, and the values were even higher than the Tg of their matrix. Additionally, the Izod impact strength of the composites has been improved. These results indicate a synergistic effect between HNT and carbon fibres.  相似文献   

10.
In the present work, the influence of the adopted confined concrete constitutive law, among those available in the technical literature, on the flexural strength and curvature ductility of reinforced concrete sections strengthened by FRP (fibre reinforced polymer) wrapping is investigated. An important issue to be underlined is that the stress–strain relationship of confined concrete depends not only on the number of layers and on the type of FRP used for wrapping, but also on the size and the shape of the section. By using the main constitutive laws proposed in the technical literature to model the confined concrete behaviour, the moment–curvature diagrams have been evaluated for a significant number of study cases by means of a specifically developed computer program based on a refined fibre model. The results show that even if the different constitutive laws exhibit large differences in the resulting stress–strain behaviour, they lead to negligible differences in terms of flexural resistance, but to very significant differences in terms of curvature ductility. Therefore, the accurate evaluation of the ultimate strain seems of paramount importance compared to the whole stress–strain curve. In addition, the influence of pre-existing loads acting on the structure at the time of the strengthening intervention has been investigated showing that it affects the knee region of the moment–curvature relationship, while the ultimate flexural resistance remains almost unaffected.  相似文献   

11.
The aim of this research is to manufacture intermingled hybrid composites using aligned discontinuous fibres to achieve pseudo-ductility. Hybrid composites, made with different types of fibres that provide a balanced suite of modulus, strength and ductility, allow avoiding catastrophic failure that is a key limitation of composites. Two different material combinations of high strength carbon/E-glass and high modulus carbon/E-glass were selected. Several highly aligned and well dispersed short fibre hybrid composites with different carbon/glass ratios were manufactured and tested in tension in order to investigate the carbon ratio effect on the stress–strain curve. Good pseudo-ductile responses were obtained from the high modulus carbon/E-glass composites due to the fragmentation of the carbon fibres. The experimental results were also compared with an analytical solution. The intermingled hybrid composite with 0.25 relative carbon ratio gave the maximum pseudo-ductile strain, 1.1%, with a 110 GPa tensile modulus. Moreover, the initial modulus of the intermingled hybrids with 0.4 relative carbon ratio is 134 GPa, 3.5 times higher than that of E-glass/epoxy composites. The stress–strain curve shows a clear “yield point” at 441 MPa and a well dispersed and gradual damage process.  相似文献   

12.
Nickel-Pitch-based carbon fibres (Ni-PFs) were prepared by electroless nickel-plating to enhance fracture toughness of Ni-PFs reinforced epoxy matrix composites (Ni-PFs/epoxy). The surface properties of Ni-PFs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD). The fracture toughness of the Ni-PFs/epoxy was assessed by critical stress intensity factor (KIC) and critical strain energy release rate (GIC). The fracture toughness of Ni-PFs/epoxy was enhanced compared to those of PFs/epoxy. These results were attributed to the increase of the degree of adhesion at interfaces between Ni-PFs and matrix resins in the composites.  相似文献   

13.
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.  相似文献   

14.
Two noncrimp 3D woven carbon fibre composites (through thickness angle interlock) of binder volume fractions 3% and 6% were characterised for their response to applied deformation. Experiments were performed at quasi static, medium and high strain rates under a large variety of load cases (tension in warp/weft direction, interlaminar/intralaminar shear, through thickness tension/compression, 3-point bending and plate bending). During the study, novel experimental methods were developed in order to address several challenges specific to 3D composite materials. The results show that, while the different binder volume fractions of 3% and 6% have only a small effect on the in-plane stiffness (warp and weft direction), its effect on the delamination resistance in plate bending experiments is considerable. This is a very important result for the use of these materials in the future. The availability, in previous publications, of complementary data for the matrix and the interface between matrix pockets and fibre bundles makes the comprehensive data set a generically useful reference for hierarchical numerical modelling strategies.  相似文献   

15.
We show that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix of glass–fiber composites reduces cyclic delamination crack propagation rates significantly. In addition, both critical and sub-critical inter-laminar fracture toughness values are increased. These results corroborate recent experimental evidence that the incorporation of CNTs improve fatigue life by a factor of two to three in in-plane cyclic loading. We show that in both the critical and sub-critical cases, the degree of delamination suppression is most pronounced at lower levels of applied cyclic strain energy release rate, ΔG. High-resolution scanning electron microscopy of the fracture surfaces suggests that the presence of the CNTs at the delamination crack front slows the propagation of the crack due to crack bridging, nanotube fracture, and nanotube pull-out. Further examination of the sub-critical fracture surfaces shows that the relative proportion of CNT pull-out to CNT fracture is dependent on the applied cyclic strain energy, with pull-out dominating as ΔG is reduced. The conditions for crack propagation via matrix cracking and nanotube pull-out and fracture are studied analytically using fracture mechanics theory and the results compared with data from the experiments. It is believed that the shift in the fracture behavior of the CNTs is responsible for the associated increase in the inter-laminar fracture resistance that is observed at lower levels of ΔG relative to composites not containing CNTs.  相似文献   

16.
Wen Huang  Xu Nie  Yuanming Xia   《Composites Part A》2003,34(12):246-1166
In order to investigate the effect of strain rate and high temperature exposure on the mechanical properties of the fibre in the unidirectional fibre reinforced metal-matrix composite, in situ SiC fibre bundles are extracted from two kinds of SiC/Al composite wires, which are heat-treated at two different temperatures (exposed in the air at 400 and 600 °C for 40 min after composition). Tensile tests for these two fibre bundles are performed at different strain rates (quasi-static test: 0.001 s−1, dynamic test: 200, 700, and 1200 s−1) and the stress–strain curves are obtained. The experimental results show that their mechanical properties are rate-dependent, the modulus E, strength σb and unstable strain b (the strain corresponding to σb) all increase with increasing strain rate. Compared with the mechanical properties of the original SiC fibre, those of the two in situ fibres degrade to some extent, the degradation of the in situ fibre extracted from the composite wire exposed at 600 °C (hereafter referred to as in situ fibre 2) is more serious than that of the in situ fibre extracted from the composite wire exposed at 400 °C (hereafter referred to as in situ fibre 1). The mechanism of the degradation is investigated. A bi-modal Weibull statistical constitutive equation is established to describe the stress–strain relationship of the two in situ fibre bundles. The simulated stress–strain curves agree well with the experimental results.  相似文献   

17.
The main objective of the present paper is to study the tensile and bending behaviors of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid composites with total fiber volume fraction (VfT) = 37%. Six kinds of laminated composites of average thickness 5.5 mm were manufactured using hand lay-up technique; i.e. [R]5, [U/R/U/R/U], [U/0.5R/U]S, [0.5R/U/U]S, [U/U/0.5R]S, and [U]5. In bending test, notched and unnotched specimens were tested. For this purpose different circular notch sizes (D = 3, 6, 9 mm) were drilled at the specimen center. Tensile strength, tensile modulus, Poisson’s ratio, bending strength and bending modulus were determined experimentally. The effect of stacking sequences, random fiber relative volume fraction (VfR/VfT), and notch diameter on the mechanical properties of the mentioned composite types were studied. Failure modes of all specimens were investigated.  相似文献   

18.
In the current study we investigated the effect of carbon nanotubes (CNTs) addition on the erosive wear response of epoxy resin and carbon fibre reinforced laminates (CFRPs) and demonstrated the positive synergy of CNTs and carbon fibres, which resulted in almost 50% decrease of the erosion rate (ER) of the CFRPs at high impact angles (90°). Incorporation of CNTs led in slight increase of the ER of the epoxy systems, especially at low impact angles. The relative fibre orientation in the CFRPs had a negligible effect on the erosive wear response mainly due to the quasi isotropic nature of the tested CFRPs. Based on the erosion efficiency parameter the response of the epoxy systems was characterised as semi-brittle, while CFRPs behaved in a brittle manner. Scanning electron micrograph provided evidence that the presence of CNTs reduced the amount of broken and/or detached fibres in the case of CFRPs.  相似文献   

19.
This paper investigates the link between acoustic emission (AE) events and the corresponding damage modes in thin-ply UD carbon/glass hybrid laminates under tensile loading. A novel configuration was investigated which has not previously been studied by AE, where the laminates were fabricated by embedding thin carbon plies between standard thickness translucent glass plies to produce progressive fragmentation of the carbon layer and delamination of the carbon/glass interface. A criterion based on amplitude and energy of the AE event values was established to identify the fragmentation failure mode. Since the glass layer was translucent, it was possible to quantitatively correlate the observed fragmentation during the tests and the AE events with high amplitude and energy values. This new method can be used as a simple and advanced tool to identify fibre fracture as well as estimate the number and sequence of damage events that are not visible e.g. in hybrid laminates with thick or non-transparent layers as well as when the damage is too small to be visually detected.  相似文献   

20.
The electrical conductivity (EC) of continuous carbon fibre (CF) layers is highly anisotropic and is expressed by a second order tensor. In the present work, using continuity equation for anisotropic media, the electrical conductivity of a dry CF multilayer preform can be predicted. Hence, the electrical conductivity tensor of the CF preform can be calculated for any stacking sequence. By means of the calculated electrical conductivity tensor of the multilayer preform, the elliptical form of the governing equation can be solved numerically. Based on this, the generated heat (Joule effect) can be determined. Introducing the generated heat into the heat transfer equation, the temperature field over the CF preform can be predicted. For the experimental verification, a thermal camera was used to record the temperature field developed on a CF multilayer preform under given electric potential field. The experimental results were compared to the respective numerical calculations of the temperature field, where the electrical conductivity tensor was calculated analytically based on the proposed methodology. In all the tested cases the calculated electrical conductivity tensor leads to a numerical model which is in excellent agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号