首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以SiC粉末、Al-Si合金粉末及CeO_2粉末为原料,采用3种混料方式(机械混合法、球磨干混、球磨湿混)、在球磨干混条件下采用不同混料时间进行混料,并采用粉末冶金法制备了稀土添加SiCp/Al基复合材料,对复合材料进行SEM表征及力学性能测试,研究了混料工艺对稀土添加SiCp/Al基复合材料组织性能的影响。结果表明:球磨干混能够同时细化SiC和Si相颗粒,对提升复合材料力学性能有利。球磨湿混因介质酒精对磨球的阻碍作用,对SiC和Si相颗粒细化效果最差,不利于提升复合材料力学性能。机械混合法则介于二者之间。球磨干混条件下,球磨时间延长有利于SiC颗粒的破碎细化,从而对提升复合材料力学性能有利。但球磨时间超过6 h,SiC细化效果不大,复合材料的性能提升效果不明显。  相似文献   

2.
颗粒增强复合材料增强体颗粒分布均匀性研究   总被引:4,自引:1,他引:3  
研究了高能球磨法与常规混合法对SiCp(B4Cp)/Al复合材料增强体颗粒分布均匀性的影响。高能球磨法使增强体颗粒弥散均匀分布于基体中,是实现增强体颗粒均匀分布的最有效的方法之一。常规混合法制备的复合材料中存在增强体颗粒的偏聚现象,颗粒偏聚程度与混粉方式和混粉时间有关,干混存在最佳混粉时间,而湿混时混合物均匀度随混粉时间延长而不断提高。  相似文献   

3.
采用湿磨-高能球磨法对高粒径比的6061Al粉末和SiC混合粉末进行预处理,利用真空热压烧结法制备SiCp/6061Al复合材料。用XRD、SEM、TEM、拉伸强度等测试方法研究球磨时间对复合粉末形貌及复合材料组织和性能的影响。结果表明:在球磨过程中铝粉和SiC颗粒形成复合聚合体,采用乙醇做控制剂,可有效地抑制冷焊反应发生;随球磨时间延长,复合聚合体逐渐变薄并最终断裂;聚合体中碳化硅的含量先增高后降低;铝粉中晶粒尺寸逐渐降低,位错增多;SiC颗粒发生碎化,在基体中分布更加均匀;复合材料的拉伸强度提高,可达到258 MPa。  相似文献   

4.
采用机械搅拌法制备了体积分数为20%的SiC颗粒增强铝基复合材料。研究了材料的制备工艺以及SiC颗粒的预处理对微观组织的影响。  相似文献   

5.
以高纯SiC粉、Cu粉为原料,通过机械球磨、真空热压烧结制备SiC颗粒弥散强化铜基(SiCp/Cu)复合材料。采用SEM、XRD等方法,研究了球磨粉末形貌、粒度及成分均匀性的变化规律,同时研究了真空热压烧结SiCp/Cu复合材料微观组织、力学性能和物理性能。结果表明:球磨转速为250 r/min、球料比为10:1(质量比)时,球磨10 h获得的SiC/Cu复合粉末成分均匀,无团聚现象;真空热压烧结复合材料的相对密度达到92%以上,SiC颗粒均匀弥散分布,具有很好的力学性能和导热导电性能;其中,烧结温度850℃、保温1 h制备的材料综合性能更佳,致密度达到96.2%,热导率为221.346 W/(m·K),电导率为65.3%IACS,抗压强度为467.46 MPa,断裂应变可达20.87%。  相似文献   

6.
采用球磨+冷压制坯+微波加热烧结工艺制备Ti–15Mg复合材料,研究球磨工艺对Ti–15Mg混合粉末性能以及烧结后复合材料力学性能的影响。结果表明:以200 r·min-1球磨转速球磨8~10 h,随着球磨时间延长,混合粉末的平均粒径明显变小,粉末粒度分布逐渐集中在10~45μm区间,粉末的球形度增加。在长时间球磨过程中,软质镁颗粒受到强烈撞击、研磨,引起表面破碎,钛颗粒出现了体积破碎和表面破碎,最终导致软质镁颗粒包裹脆性钛颗粒。球磨8 h后,混合粉末未出现明显的氧化,混合粉末中钛、镁粉末分布较为均匀,复合材料的力学性能较为优良,符合作为医用材料的力学性能要求。在低球磨转速下,球磨转速的提高不会导致粉末性能和烧结后复合材料性能出现明显变化。最佳球磨工艺参数为球磨时间8 h、球磨速度200 r·min-1,过程控制剂为正己烷。  相似文献   

7.
采用粉末冶金法制备SiC颗粒增强工业纯Al基复合材料,研究混料时间和挤压对复合材料显微组织和力学性能的影响。研究表明:机械混粉过程存在最佳的混料时间,混料时间为16 h时SiC颗粒分布均匀,复合材料的密度高、力学性能好。挤压可以改善复合材料的界面结合强度、减少孔洞的数量,从而提高材料的致密度和力学性能。烧结态复合材料的断裂机制以基体的脆性断裂以及增强相与基体的界面脱粘为主。挤压态复合材料的断裂以基体的韧性断裂以及SiC颗粒的脆性断裂为主,伴随着少量的基体与SiC颗粒的界面脱粘。  相似文献   

8.
研究了反应压力熔渗法制备高含量SiCp/Al复合材料的工艺过程及其抗弯强度。研究表明:通过适当的粒度配比,可在低温、低压力下熔渗制备组织均匀的高含量SiCp/6013Al复合材料,SiC颗粒含量达到63%;复合材料的强度在很大程度上依赖于SiC颗粒尺寸及界面反应程度,合适的界面结合及细SiC颗粒的掺入有利于复合材料强度的提高,最高可达445MPa。  相似文献   

9.
冷金凤  武高辉 《稀有金属》2006,30(Z2):20-23
颗粒增强的铝基复合材料已在航空航天、汽车等工业领域获得广泛的使用,但难加工性限制了此类复合材料的广泛应用.选用SiC颗粒和鳞片状石墨作为增强体,采用挤压铸造法制备SiCp+Gr/2024Al 复合材料,在保证材料力学性能的前提下改善材料的加工性能.结果表明,复合材料组织致密,石墨和SiC颗粒在基体中均匀分布;铸态组织中SiC和石墨颗粒与基体Al合金都未发现界面反应物;随着石墨的体积分数的增大,拉伸强度和弹性模量都下降,但加工性能得到明显的改善.石墨改善切削性能的机制为影响切屑形成机制和石墨对刀具的润滑作用.  相似文献   

10.
以SiC粉末、Al-Si合金粉末及CeO2粉末为原料,采用3种混料方式(机械混合法、球磨干混、球磨湿混)、在球磨干混条件下采用不同混料时间进行混料,并采用粉末冶金法制备了稀土添加SiCp/Al基复合材料,对复合材料进行SEM表征及力学性能测试,研究了混料工艺对稀土添加SiCp/Al基复合材料组织性能的影响.结果表明:球...  相似文献   

11.
详细阐述了SiC_p/Al复合材料的粉末冶金制备工艺,包括混粉工艺(如球料比、球磨时间、球磨机转速),冷压成形(如压制压力、保压时间、静置时间等参数的选择),除气(如除气方法),热固结技术(如真空热压法、常压烧结热挤压法、粉末热挤压法)等;简述了增强体(SiC_p)尺寸、界面对SiC_p/Al复合材料性能的影响以及SiC_p/Al复合材料的强化机制;最后展望了SiC_p/Al复合材料的发展方向。  相似文献   

12.
高能球磨制备纳米WC-8Co复合粉末   总被引:4,自引:1,他引:4  
对采用高能球磨法制备纳米WC-8Co复合粉末的工艺条件进行了研究。实验采用逐步优化方式,研究液固比、球料比、球磨转速、球磨时间对粉末的特性的影响。采用SEM扫描电镜观察粉末形貌,用EDX能谱分析了粉末中Co元素的分布,检测了粉末中Co的化学成分,确定了液固比参数,通过检测粉末的比表面和BET粒度的变化优化球料比、球磨转速及球磨时间等工艺参数,采用最优化工艺得到了粉末比表面为6.82m2/g、BET粒度为59.4nm,Co相分布均匀的纳米WC-8Co复合粉末。  相似文献   

13.
为了研究不同粒径的Si C体积配比对SiC_p/Al基复合材料显微组织及拉伸性能的影响,采用高压扭转法(High-pressure torsion,HPT)将3.5μm(小)、7.0μm(大)SiC颗粒体积比分别为4∶1、1∶1、1∶4的SiC颗粒和纯Al粉末混合物制备成10%SiC_p/Al基复合材料(体积分数)。用金相显微镜、万能试验机、扫描电镜等分析2种粒径的Si C体积比对SiC_p/Al基复合材料显微组织和拉伸性能的影响。结果表明,随扭转半径增大,各试样的SiC颗粒分布更加均匀,颗粒团聚、偏聚现象减少,其中小、大SiC颗粒体积比为1∶1的试样性能最优,伸长率、相对密度最高,分别达到14.3%和99.1%,拉伸断裂形式为塑性断裂。  相似文献   

14.
为了有效改善球磨过程中石墨烯结构被破坏的问题,采用静电自组装、球磨与粉末冶金相结合的工艺制备还原氧化石墨烯-镍/铜(RGO-Ni/Cu)复合材料,并分析了球磨时间对RGO-Ni/Cu粉体形貌及RGO-Ni/Cu复合材料的显微组织、电导率、硬度和耐磨性能的影响。结果表明,随球磨时间增加,RGO-Ni/Cu复合粉体的形貌由团聚状转变为片层状再转变为碎片状,同时仍保留了自组装RGO-Ni粉体的二维褶皱状形貌。随着球磨时间的延长,RGO-Ni相在RGO-Ni/Cu复合材料中的分布形式由团块状分布逐渐转变为条状分布。球磨时间为4 h时RGO-Ni/Cu复合材料的综合性能最好,摩擦因数(COF)为0.456,RGO-Ni/Cu复合材料的磨损机制与石墨烯润滑膜的形成程度有关,且石墨烯润滑膜的形成受RGO-Ni/Cu复合材料相对密度的影响。  相似文献   

15.
Al-SiC nanocomposites were prepared by high energy ball milling of mixtures of pure Al and 50-nm-diameter SiC nanoparticles, followed by spark plasma sintering. The final composites had grains of approximately 100 nm dimensions, with SiC particles located mostly at grain boundaries. The samples were tested in uniaxial compression by nano- and microindentation in order to establish the effect of the SiC volume fraction, stearic acid addition to the powder, and the milling time on the mechanical properties. The results are compared with those obtained for pure Al processed under similar conditions and for AA1050 aluminum. The yield stress of the nanocomposite with 1 vol pct SiC is more than ten times larger than that of AA1050. The largest increase is due to grain size reduction; nanocrystalline Al without SiC and processed by the same method has a yield stress seven times larger than AA1050. Adding 0.5 vol pct SiC increases the yield stress by an additional 47 pct, while the addition of 1 vol pct SiC leads to 50 pct increase relative to the nanocrystalline Al without SiC. Increasing the milling time and adding stearic acid to the powder during milling lead to relatively small increases of the flow stress. The hardness measured in nano- and microindentation experiments confirms these trends, although the numerical values of the gains are different. The stability of the microstructure was tested by annealing samples to 423 K and 523 K (150 °C and 250 °C) for 2 hours, in separate experiments. The heat treatment had no effect on the mechanical properties, except when treating the material with 1 vol pct SiC at 523 K (250 °C), which led to a reduction of the yield stress by 13 pct. The data suggest that the main strengthening mechanism is associated with grain size reduction, while the role of the SiC particles is mostly that of stabilizing the nanograins.  相似文献   

16.
《粉末冶金学》2013,56(3):276-282
Abstract

Mixtures of aluminium powder and nanoscaled SiC particles (n-SiC) at various volume fractions of 0, 1, 3, 5, 7 and 10 are comilled in a high energy planetary ball mill under an argon atmosphere to produce nanocrystalline Al–SiC nanocomposites. High resolution scanning electron microscopy (HRSEM), X-ray diffraction (XRD) method, laser particle size analysis and powder density measurement were used to study the morphological changes and microstructural evolution occurred during mechanical alloying. Al–SiC composite powder with microscaled SiC particles (1 m m) was also synthesised and characterised to examine the influence of reinforcement particle size on the milling process. It was found that with increasing volume fraction of n-SiC, a finer composite powder with more uniform particle size distribution is obtained. The morphology of the particles also became more equiaxed at shorter milling times. Furthermore, the analysis of XRD patterns by Williamson–Hall method indicated that the crystallite size of the aluminium matrix decreases with increasing reinforcement volume content while the lattice strain changes marginally. As compared with microscaled SiC particles, it appeared that the effect of n-SiC on the milling stages is more pronounced. The results clearly show that the reinforcement particles influence the work hardening and fracture of the metal matrix upon milling, affecting the structural evolution. With decreasing size of the ceramic particles to nanoscale, this influence becomes more pronounced as the surface to volume fraction increases.  相似文献   

17.
高能球磨粉末冶金SiCp/Al复合材料的界面结构   总被引:1,自引:1,他引:1  
樊建中  左涛  徐骏  石力开 《稀有金属》2004,28(4):648-651
采用高能球磨粉末冶金技术制备了SiCp/Al复合材料,研究分析了该材料界面结构特点。结果表明,该材料的界面包括轻微反应型和干净界面两种,轻微反应型界面由SiC颗粒表面及其附近基体中的MgAl2O4组成,干净界面上无反应物。  相似文献   

18.
塑性变形对15% SiCp/2009 Al复合材料的性能改善   总被引:3,自引:0,他引:3  
采用粉末冶金法制备的15%SiCp/2009Al复合材料挤压棒材具有良好的塑性与较高的拉伸强度,再进行压缩变形后发现,复合材料的强度得到较大幅度提高,而塑性值基本保持稳定。同时,不同锻压温度和变形量对复合材料的性能影响较小。通过金相观察发现,复合材料经过锻压后,SiC颗粒分布较挤压态更为均匀,而挤压造成的颗粒带状分布被消除。  相似文献   

19.
《粉末冶金学》2013,56(4):265-273
Abstract

Copper–graphite (Cu–Gr) composites with 0, 5, 10 and 15 vol.-% graphite were processed via powder metallurgy route. The effect of composition and milling time on mechanical properties and wear resistance were studied. With increase in vol.-% of graphite, there was decrease in hardness of the composites. However, increasing milling time showed significant increase in hardness of the composites. Compressive strength of the composites containing 5 and 10 vol.-% of graphite was found to be 515 and 393 MPa respectively. The wear tests were carried out using a block-on-ring tribometer at a load of 30 N with varying sliding speed. The wear performance of the composites was found to be better with increase in milling time. The worn surfaces were analysed using FESEM. With increase in graphite content from 5 to 15 vol.-%, the coefficient of thermal expansion of the Cu–Gr composites decreased from 14·1 to 12·2×10?6/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号