首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Araújo  M. Aguiar 《Vacuum》2008,82(12):1437-1440
Cobalt ferrite (CoFe2O4) thin films have been deposited on Si (001) substrates, with different substrate temperatures (Tdep = 25 °C − 600 °C). The films were prepared by pulsed laser ablation with a KrF excimer laser (wavelength λ = 248 nm). The oxygen pressure during deposition was 2 × 10−2 mbar. The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low deposition temperatures, the films presented a mixture of a CoFe2O4 phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the deposition temperature increased, the CoO and FeO relative content strongly decreased, so that for Tdep = 600 °C the films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field (Hexch) originated by the presence of the antiferromagnetic phases. The exchange field decreased with increasing deposition temperature, and was accompanied by a corresponding increase of the coercivity and remanence ratio of the cycles. This behavior was due to the strong reduction of the CoO and FeO content, and to the corresponding dominance of the CoFe2O4 phase on the magnetic properties of the thin films.  相似文献   

2.
A facile solvothermal route is used for the synthesis of Co/CoFe2O4 nanobelts by rationally manipulating the dosages of a surfactant Poly(vinylpyrrolidone) (PVP, MW 40000). PVP plays a pivotal role in preparing the Co/CoFe2O4 nanobelts. The optimal dosage for the synthesis of the Co/CoFe2O4 nanobelts is 0.5 g. Lower than this value, octahedral particles and nanobelts were coexistent; higher than this value, octahedral particles were obtained. Furthermore, the possible formation mechanism of Co/CoFe2O4 nanobelts was proposed. A small quantity of Co2+ ions are reduced by glycerol, which is the reason for the presence of metallic Co in the CoFe2O4 ferrite. The Co/CoFe2O4 nanobelts may be very attractive for potential applications because of their outstanding magnetic properties (Ms = 110 emu/g, Hc = 387 Oe).  相似文献   

3.
首先采用溶胶-凝胶法制备钴铁氧体,再使用水热原位合成钴铁氧体(CoFe2O4,CFO)/聚吡咯(polypyrrole,PPy)新型复合材料。采用X射线衍射仪(XRD)分析样品的相结构、扫描电子显微镜(SEM观察样品微观形貌、振动样品磁场计(VSM)测试样品磁性能表征样品磁性能、样品的电磁参数采用矢量网络分析仪分析,计算获得样品在(8~12)GHz频率范围内的反射损耗。结果表明:在以酒石酸为络合剂、pH=5左右、经650 ℃热处理,得到结晶度良好的尖晶石结构钴铁氧体,平均粒径为350 nm;原位聚合后得到的钴铁氧体/聚吡咯复合材料表现出良好的吸波性能,在涂层厚度1.5 mm,PPy含量为6%时,吸波性能最佳,在频率为8.66 GHz处达到-11.05 dB,小于-5 dB的频段范围为(7.49~11.43)GHz,其可作为一种轻质、宽频的雷达波吸收剂来使用。  相似文献   

4.
Epitaxial thin films of SnFe2O4 are deposited on sapphire substrate by ablating the sintered SnFe2O4 target with a KrF excimer laser (λ = 248 nm and pulsed duration of 20 ns). X-ray diffraction study reveals that SnFe2O4 films are epitaxial along (222) direction. The optical bandgap of SnFe2O4 film is estimated using transmittance vs. wavelength data and is observed to be 2.71 eV. The presence of hysteresis loop at room temperature in magnetization vs. field plot indicates the ferromagnetic behavior of the film. It is observed that the coercive field and remnant magnetization decrease with increase in temperature.  相似文献   

5.
Ball milling (BM) of bulk CoFe2O4 powder material carried out in order to study its structural stability and attendant property changes with respect to coercivity enhancements and superparamagnetic behaviors, showed that drastic crystallite size reduction occurred within the first 1 h of ball milling. Crystallite size dropped from 74 nm for the as-received material to a value of 11.6 nm for 600 min of ball milling. Combined X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed crystallite size reduction with corresponding increase in interparticle agglomeration/pores with increasing milling time. The maximum coercivity of 0.46 T and the crystallite size of 15.6 nm were recorded with 20 min, while peak residual strain of 0.0066 mm/mm was for 180 min of BM. Material with peak coercivity value did not have peak residual strain, or minimum crystallite size, thereby suggesting that other structural defects contributed to coercivity enhancement. The saturation magnetization (Ms) value decreased continuously with increasing milling time, while remanence magnetization (Mr) and coercivity decreased with increasing BM time, after an initial increase. Mössbauer spectroscopy (MS) measurements confirmed both particle size distribution and decomposition/disordering of the material together with superparamagnetism as BM time increased. The degree of inversion ranged from 41% to 71.7% at different milled states from Mössbauer spectroscopy. The internal magnetic fields of the Fe sites associated with the tetrahedral and octahedral sites were 507.4 kOe and 492 kOe respectively in the unmilled state, while 484 kOe and 468.5 kOe in the 600 min milled state correspondingly.  相似文献   

6.
Yong Liu 《Materials Letters》2009,63(28):2526-2528
Magnetic monodisperse ferrite MFe2O4 (M = Fe, Co, Ni) nanoparticles have been successfully deposited on carbon nanotubes (CNTs) by in situ high-temperature hydrolysis and inorganic polymerization of metal salts and CNTs in polyol solution. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS) and vibrating sample magnetometer (VSM) investigations were used to characterize the final products. The influencing factors for formation of CoFe2O4 nanoparticles along CNTs have also been discussed briefly. The main advantage of this synthetic strategy is that it is beneficial for the fabrication of magnetic CNTs with a compact layer of nanoparticles and could be extended to prepare series of ferrite/CNTs nanocomposites via the substitution of metal cations.  相似文献   

7.
The BaTiO3-CoFe2O4 (BTO-CFO) composite films were grown on SrTiO3 (STO) (100) substrates at 750 °C under various working pressures by pulsed laser deposition. The composite film grew into a supersaturated single phase at the working pressure of 10 mTorr, BTO and CFO (00 l) oriented hetero-epitaxial films on STO (100) at 100 mTorr, and a polycrystalline composite film at 500 mTorr. The slow growth rate at high working pressure led to the phase separation in the composite film. The CFO was compressively strained along out-of-plane due to the lattice mismatch with the BTO matrix phase. The BTO-CFO composite film grown at 100 mTorr showed reversible switching of ferroelectric polarization and magnetic hysteresis with strong magnetic anisotropy.  相似文献   

8.
Ca3Co4O9 thin films are deposited on Al2O3(001) substrates using a sol-gel spin-coating process. X-ray diffraction shows that the film exhibits a single phase of Ca3Co4O9 with the (00l) planes parallel to the film surface. The temperature dependence of magnetic susceptibility showed as expected the existence of two magnetic transitions similar to those observed in bulk samples: a ferrimagnetic and a spin-state transition around 19 and 375 K, respectively. At 5 K the magnetization curves along the c-axis of the Al2O3(001) show that the remanent magnetization and coercive field are close to those obtained for films grown by pulsed laser deposition, which evidences the interest to use such an easy technique to grow complex thin films oxides.  相似文献   

9.
Cu2ZnSnS4 films were grown on Si (100) by vacuum evaporation using elemental Cu, Sn, S and binary ZnS as sources. X-ray diffraction patterns of films grown at different substrate temperatures indicated that polycrystalline growth was suppressed and the orientational growths were relatively induced in a film grown at higher temperatures. Tetragonal structure of Cu2ZnSnS4 films was confirmed by studying RHEED patterns. The existence of c-axis ([001] direction) growth, two kinds of a-axis (〈100〉 direction) growth and four kinds of {112} twins which can be classified as two symmetrical pairs is proposed. Broad emissions at around 1.45 eV and 1.31 eV were observed in the photoluminescence spectrum measured at 13 K.  相似文献   

10.
GaN nanorods were synthesized by ammoniating Ga2O3/In2O3 thin films deposited on Si (111) with magnetron sputtering. X-ray diffraction, Scanning electronic microscope and high-resolution TEM results show that they are GaN single crystals, the sizes of which vary from 2 to 7 μm in length and 200 to 300 nm in diameter. In2O3 middle layer plays an important role in the GaN nanorod growth.  相似文献   

11.
Epitaxial Bi2Sr2Co2Oy thin films with excellent c-axis and ab-plane alignments have been grown on (001) LaAlO3 substrates by chemical solution deposition using metal acetates as starting materials. Microstructure studies show that the resulting Bi2Sr2Co2Oy films have a well-ordered layer structure with a flat and clear interface with the substrate. Scanning electron microscopy of the films reveals a step-terrace surface structure without any microcracks and pores. At room temperature, the epitaxial Bi2Sr2Co2Oy films exhibit a resistivity of about 2 mΩ cm and a seebeck coefficient of about 115 μV/K comparable to those of single crystals.  相似文献   

12.
The direct measurement of the thermo-optic coefficients of aluminium oxide, tantalum pentoxide and titanium dioxide thin films is presented. Using ellipsometry on monolithically integrated permutations of the layers of silicon, silicon dioxide and the material under test, allows the direct measurement of the overall thermo-optic coefficient accounting for thermally induced changes in the dielectric permittivity and density of the materials as well as the elasto-optic effect due to the non-matching thermal expansion coefficients of the different materials.  相似文献   

13.
MgFe2O4/TiO2 (MFO/TiO2) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe2O4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.  相似文献   

14.
CdIn2O4 sensor with high sensitivity and excellent selectivity for H2S gas was synthesized by using sol-gel technique. Structural, electrical and gas sensing properties of doped and undoped CdIn2O4 thick films were studied. XRD revealed the single-phase polycrystalline nature of the synthesized CdIn2O4 nanomaterials. Since the resistance change of a sensing material is the measure of its response, selectivity and sensitivity was found to be enhanced by doping different concentrations of cobalt in CdIn2O4 thick films. The sensor exhibits high response and selectivity toward H2S for 10 wt.% Co doped CdIn2O4 thick films. The current-voltage characteristics of 10 wt.% Co doped CdIn2O4 calcined at 650 °C shows one order increase in current with change in the bias voltage at an operating temperature of 200 °C for 1000 ppm H2S gas.  相似文献   

15.
The influence of SiO2 layer thickness of (Fe52Pt48)88Cu12:SiO2 multilayer nanocomposite films on their structural and magnetic properties were investigated. The films were deposited on (001) textured FePt films, and then annealed at 873 K. The crystalline texture of (Fe52Pt48)88Cu12:SiO2 films changes drastically with respect to the thickness of the SiO2 layers. In the film with 50-Å thick SiO2 layers, the (111) peak was strong although the (001) orientation is dominant, and self-organized spherical FePtCu particles were formed in the SiO2 matrix. However, in the film with 19-Å thick SiO2 layers, flat FePt grains with perfect (001) orientation were obtained. In addition, twins with different crystalline orientations were seen in the above films with different thicknesses of the SiO2 layers. Accordingly, different perpendicular hysteresis loops were obtained.  相似文献   

16.
Strontium ruthenate and Bi3.25La0.75Ti3O12 (BLT) layers were grown on Si(100) substrate using pulsed laser deposition technique. Starting from a Sr2RuO4 target, we obtained single phase films composed of Sr4Ru2O9; on these strontium ruthenate electrodes, textured and non-textured BLT were grown at 700 °C. Structural characterizations of these double layers were done by X-ray diffraction, scanning electron microscopy, normal and high-resolution transmission electron microscopy. The Van der Pauw's resistivity measurements indicate that Sr4Ru2O9 can be used as a back electrode. The temperature dependence of the resistivity at low temperatures is , which corresponds to a variable-range hopping mechanism.  相似文献   

17.
A mixed-metal citrate precursor method was used to synthesize SrAl2O4. The effects of the pH of the starting solutions and the molar ratio of citric acid to total metal cations concentration (CA/M) on the formation of SrAl2O4 were studied. DTA, TG, FT-IR, XRD and field emission scanning electron microscopy (FESEM) were used to characterize the precursors and the derived oxide powders. XRD analysis showed that single-phase SrAl2O4 was synthesized from CA/M = 2 precursors at a temperature of 900 °C for 2 h, without the formation of any intermediate phase.  相似文献   

18.
Mn3O4 and LiMn2O4 nanoparticles were prepared by a simple sonochemical method which is environmentally benign. First, Mn3O4 nanoparticles were prepared by reacting MnCl2 and NaOH in water at room temperature through a sonochemical method, operated at 20 kHz and 220 W for 20 min. Second, LiOH was coated onto the resulting Mn3O4 under the same sonochemical conditions as above. The thickness of coated LiOH on Mn3O4 obtained from the reaction ratio of 3:1 between LiOH and Mn3O4 was about 4.5–5.5 nm range. Then, by heating those LiOH-coated Mn3O4 particles at the relatively low temperature of 300–500 °C for 1 h, they were transformed into phase-pure LiMn2O4 nanoparticles of about 50 to 70 nm size in diameter.  相似文献   

19.
High quality epitaxial Bi3.15Nd0.85Ti3O12 (BNT) thin films with thicknesses from 30 to 80 nm have been integrated on SiO2/Si substrates. MgO templates deposited by ion-beam-assisted deposition and SrRuO3 (SRO) buffer layers processed by pulsed laser deposition have been used to initiate the epitaxial growth of BNT films on the amorphous SiO2/Si substrates. The structural and ferroelectric properties were investigated. Microstructural studies by X-ray diffraction and transmission electron microscopy revealed high quality crystalline with an epitaxial relationship of (001)BNT||(001)SRO||(001)MgO and [100]BNT||[110]SRO||[110]MgO. A ferroelectric hysteresis loop with a remanent polarization of 3.1 μC/cm2 has been observed for a 30 nm thick film. The polarization exhibits a fatigue-free characteristic up to 1.44 × 1010 switching cycles.  相似文献   

20.
Epitaxial thin films of a heterostructure with Bi4Ti3O12(BIT)/SrTiO3(ST) were successfully grown with a bottom electrode consisting of La0.5Sr0.5CoO3(LSCO) on MgO(001) substrates using pulsed laser deposition. The grown BIT and ST (001) planes were parallel to the growth surface with the orientation relationship of BIT <110>//ST <010>. In the as-deposited film, the BIT (001) plane appeared to expand to relieve a lattice mismatch with the ST (001) plane. However, annealing for 20-40 min induced the BIT (001) plane to contract horizontally with its c-axis expanding, which was associated with a local perturbation in the layer stacking of the BIT structure. This structural distortion was reduced in the film annealed for 1 h, with restoration of the periodicity of the layer stacking. Correspondingly, the dielectric constant of the as-deposited film was increased from 292 to 411 by annealing for 1 h. In parallel, the film was paraelectric but became more ferroelectric, with the remanent polarization and the coercive field changing from 0.1 μC/cm2 and 14 kV/cm to 1.7 μC/cm2 and 69 kV/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号