共查询到20条相似文献,搜索用时 0 毫秒
1.
挖掘关联规则的并行算法 总被引:3,自引:0,他引:3
从大型数据库中挖掘关联规则是数据挖掘中一个重要的课题 .从挖掘要求的时间和空间上看 ,传统的顺序算法已很难适应于现实中不断增大的数据库规模 .而研究和发展高性能、可扩展的并行算法对解决这一问题就显得十分必要 .本文介绍了挖掘关联规则一些主要的并行算法 ,并对它们进行了一定分析 ,指出了发展并行算法要考虑的一些问题 . 相似文献
2.
在研究关联规则挖掘算法的基础上,对并行关联规则算法进行了比较全面的分析,并给出了并行数据挖掘的计算框架。提出了一个以计算服务器为中心节点的并行挖掘算法,可以发挥各局部节点的优势,无需各局部节点进行通信,减少了各局部节点的通信负荷。通过理论分析和实验数据验证,该算法具有较好的可扩展性和海量处理能力,特别是在节点数目较多的情况下更显示出优势。 相似文献
3.
量化关联规则挖掘及算法 总被引:2,自引:0,他引:2
提出了一种新的量化关联规则挖掘算法QAR及其增量式更新算法IUQAR.算法以模糊集理论为基础,利用模糊概念表示量化属性属性间的关联关系,克服了传统的离散分区方法的不足,使得规则的表示自然、简明,有利于专家理解。同时,给出的算法IUQAR,有效地解决了规则的维护问题。 相似文献
4.
Mining association rules from large databases is very costly. We propose to develop parallel algorithms for this task on shared-memory multiprocessor (SMP). All proposed parallel algorithms for other paradigms follow the conventional level-wise approach: they need as many iterations as the length of the maximum large itemset. To make matter worse, they impose a synchronization in every iteration which would cause serious I/O contention on shared-memory parallel system. An adaptive asynchronous parallel mining algorithm APM has been proposed for SMP. All processors generate candidates dynamically and count itemset supports independently without synchronization. Two optimization techniques have been proposed for the reduction of database scanning and the number of candidates. The algorithm APM has been implemented on a Sun Enterprise 4000 shared-memory multiprocessor with 12 nodes. The experiments show that the optimizations have very good effects and APM has a substantial lead in performance over other proposed level-wise algorithms. 相似文献
5.
文章主要论述了数据挖掘的概念、过程及应用前景,此外还重点介绍了数据挖掘中常用的一种算法-关联规则算法. 相似文献
6.
关联规则挖掘中增量式更新算法的研究 总被引:8,自引:1,他引:8
关联规则的更新是数据挖掘技术中的一个重要内容,能否有效地挖掘出动态事务数据库中的频繁项目集或关联规则是衡量一个算法好坏的关键因素。该文系统地介绍了关联规则的增量式更新问题,给出或提出了相应的算法,并举例说明了算法的执行过程。 相似文献
7.
8.
关联规则挖掘的维护算法研究 总被引:2,自引:1,他引:2
关联规则挖掘是数据挖掘领域中的重要研究内容之一。由于数据挖掘的过程是动态交互的,因此对已经发现的关联规则进行维护更新显得非常重要。文中首先提出了维护更新问题的背景,并将维护更新问题具体分成为四种情况。之后详细介绍了各种情况相应的维护关联规则的增量更新算法,并对其进行了分析与评价,指出算法的优点和不足。最后提出了今后研究的方向。 相似文献
9.
发现关联规则是数据挖掘的一个重要的任务.简要介绍了几种发现关联规则的串行算法和并行算法,并针对IDD和HD这两种效率和可扩展性较好的算法,引入在线LPT调度算法,有效地解决了IDD和HD算法中非常重要的候选项目集在各个处理器节点之间的划分问题,尽可能使得各个节点负载平衡,从而提高算法的效率. 相似文献
10.
近些年来,计算机技术迅猛发展带动信息技术的兴起,数据挖掘技术被广泛地应用到各个领域当中。这个新兴的领域为数据挖掘技术提供了最为活跃的算法,即关联规则算法,其能够对于大量的数据和信息进行处理,通过将繁琐的项集从数据库中找出来,经过整理之后,将项集之间的关联关系建立起来,从中挖掘出有价值的数据信息,以在一定程度上满足不同领域的需要。本文针对数据挖掘中关联规则算法进行研究。 相似文献
11.
一种基于约简概念格的关联规则快速求解算法 总被引:2,自引:2,他引:2
关联规则挖掘是数据挖掘领域中重要的研究分支,已形成了较多的研究成果。然而,大多数基于频繁项集求解关联规则的挖掘算法需要多次扫描数据库。该文提出了一种基于概念格的关联规则快速求解算法,该算法仅需一次扫描数据库即可确定所有的频繁项集并且进而能够快速求解出关联规则。文章首先讨论了约简概念格(RECL)的构造原理,并详细描述了基于RECL的关联规则的挖掘算法,最后以实验证明了算法的正确性和优越性。 相似文献
12.
关联规则开采的集合算法 总被引:1,自引:0,他引:1
为了有效地从商业数据库中开采出有用的信息,需要解决的两个关键问题:(1)如何将现有的各种开采算法集成到DBMS(数据库管理系统)中去,(2)提高开采的效率,本文以关联规则开采为例,研究了上述问题,为了将关联规则开采算法与DBMS进行无缝集成,我们需要研制面向集合操作的集合算法,STEM是关联规则开采的经共集合算法,我们在分析了STEM算法性能以后提出了改进的SETM算法,为了提高开采的效率我们给出了并行开采算法PSETM*(Parallel SETM*),从算法比较中可以看出SETM*比SETM要高效。 相似文献
13.
基于关联图的关联规则挖掘算法研究 总被引:15,自引:0,他引:15
在挖掘关联规则的过程中 ,一个关键的步骤是产生频繁项目集 .本文给出一种基于关联图的关联规则挖掘算法 ,并将它与性能比较好的关联规则挖掘算法 DHP进行了比较 ,结果表明 ,本文的算法优于 DHP算法 相似文献
14.
一种有效的关联规则的挖掘方法 总被引:13,自引:1,他引:13
提出简单关联规则的定义,并证明传统算法挖出的规则集中的任何规则均可以由简单关联规则生成,而简单关联规则的数量远远小于传统算法挖掘出的规则数量,从理论上证明了简单关联规则算法的优越性。 相似文献
15.
LIU Zhi- yi 《数字社区&智能家居》2008,(18)
对关联规则算法进行了研究和分析,基于候选集的Apriori-like算法需要反复扫描数据库,并产生大量的候选集,在挖掘低支持度、长模式的规则时效率低下。针对算法的缺陷,该文提出了一种PS算法,优化了关联规则的挖掘。实验结果证明了该算法的有效性。 相似文献
16.
关联规则的高效挖掘算法研究 总被引:4,自引:0,他引:4
关联规则的挖掘是一个重要的数据挖掘问题,对其挖掘算法的研究具有十分重要的意义,经典的关联规则发现算法是一个多次遍历的算法,计算的复杂度较同,本文给出一种关联规则频繁数据集的发现算法,只需对交易序列扫描两次即可发现数据采的频繁数据集,算法效率得到了较好地提高。 相似文献
17.
Shared-nothing并行事务数据库系统中规则的挖掘与更新算法 总被引:1,自引:0,他引:1
关联规则是数据挖掘中的一个重要研究内容.本文提出了Shared—nothing并行事务数据库系统(简称SNPDBS)中一种快速的关联规则挖掘算法SNPMAR,并考虑当最小支持度发生变化后SNPDBS中关联规则的高效更新问题,提出了一种有效的关联规则更新算法SNPIUA. 相似文献
18.
基于分布数据库的快速关联规则挖掘算法 总被引:8,自引:0,他引:8
关联规则发现是数据挖掘的重要研究内容,随着数据库中数据的不断增加,大数据集环境下的关联规则发现日益受到重视,分布式关联规则发现是解决这一问题的有效方法。分布式数据库环境下的关联规则挖掘算法中,时间开销主要体现在两方面(:1)频繁项目集的确定;(2)网络的通讯量。为了解决第一个问题,文章提出了一种基于二进制形式的候选频繁项目集生成和相应的计算支持数算法,该算法只需对挖掘对象进行一些”或”、”与”、”异或”等逻辑运算操作,显著降低了算法的实现难度。将该算法与DMA算法相结合提出改进算法FDMA。理论分析和实验结果表明,算法FDMA大大提高了关联规则挖掘的效率,算法是有效可行的。 相似文献
19.
分布式环境下约束性关联规则的快速挖掘 总被引:2,自引:0,他引:2
研究人员针对单机环境提出了约束性关联规则的挖掘算法,但它们不适用于分布式环境.为此本文讨论分布式环境下约束性关联规则的快速挖掘技术,提出一种基于分布式环境的约束性关联规则快速挖掘算法DCAR,其中包括局部约束性频繁项目集挖掘算法MLFC和全局约束性频繁项目集挖掘算法MGFC.该算法根据布尔约束条件产生向导集,采用一种新的候选项集生成函数Reorder-gen,该函数通过向导集高效地产生分布式环境中满足约束条件的、数量较少且完备的候选项集,并且求解全局约束性频繁项集过程中,传送局部候选项集支持数的通信量为O(n),从而提高了算法的挖掘效率.将本文提出的算法加以实现,实验结果表明DCAR算法高效可行,其效率大约是DMA-IC算法的2-3倍. 相似文献
20.
关联规则挖掘算法在分类中的应用研究 总被引:1,自引:0,他引:1
提出了一个基于关联规则挖掘算法的医疗数据分类方法。介绍了关联规则的理论基础、关联规则挖掘算法及其在医疗数据挖掘中的应用方法,并利用介绍的算法对乳腺癌数据进行挖掘。获得了分类的实验结果,该模型系统达到了较高的分类准确率,证明了数据挖掘在辅助医疗诊断中有着广泛的应用前景。 相似文献