首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
光伏发电受多种气象因素和环境因素的影响,具有明显的间歇性、随机性和波动性。为了提高光伏短期功率预测的准确性,提出了一种基于Kmeans-SSA-LSSVM的预测模型,以提高预测精度。首先使用Kmeans算法对天气进行分类,然后利用SSA优化后的LSSVM对各天气类型分别进行功率预测。结果表明与BP、SVM、PSO-SVM相比,Kmeans-SSA-LSSVM提高了光伏短期功率预测模型的精度,对电力系统并网调度有重要意义。  相似文献   

2.
臧冬  尹杭  刘洋 《电气开关》2020,(3):49-53
光伏发电技术因其清洁无污染、安装便利、维护成本低和使用效率高等优势近年来获得了快速的发展,但是光伏输出功率具有明显的随机性和不确定性,当其大规模接入电网后其波动特性表现的更为突出,给电网带来巨大冲击的同时降低了电网运行的可靠性,增添了电网调度运行管理的成本与难度。针对此问题本文提出一种基于粒子群算法和神经网络算法的组合预测方法对光伏发电功率进行短期预测,对传统神经网络功率预测算法寻优性能欠佳的问题进行改善,利用粒子群算法对输入样本进行合理优化,同时利用变步长的动量梯度法对神经学习因子进行不断修正,形成一种组合的功率预测方法用于光伏功率预测。仿真结果表明本文预测模型在日类型天气为晴朗天气时的预测结果最好,精度提升相比传统方法来说13%左右。  相似文献   

3.
针对现有的光伏功率超短期预测方法难以得到所需复杂的气象数据,且光伏时间序列具有混沌特性,将小波去噪后的光伏电站的历史功率数据利用C-C法挖掘数据自身所包含的各影响因子.利用鸡群算法(CSO)对小波神经网络(WNN)的初值进行寻优,来提升WNN的预测性能.由于径向基函数(RBF)神经网络预测模型处理非线性输入输出关系具有...  相似文献   

4.
为进一步提高光伏发电功率预测的准确度,从而将思维进化算法(MEA)和Elman神经网络相结合,通过MEA优化Elman神经网络权值和阈值,克服了Elman神经网络易陷入局部最优等缺陷。根据光伏发电系统的历史发电数据和气象数据,建立MEA-Elman神经网络预测模型并对其测试。结果表明,与原有光伏预测模型比较,该预测模型能够有效提高光伏预测的有效性和精确性。  相似文献   

5.
朱坤  付青 《电源技术》2023,(1):103-107
光伏功率预测对电网调度具有重要意义。针对光伏功率数据具有较强波动性和不稳定性的特点,提出了一种基于集成经验模态分解(ensemble empirical mode decomposition, EEMD)、K均值聚类算法(Kmeans clustering algorithm, Kmeans)和蚁狮优化(ant lion optimization, ALO)算法优化的长短期记忆神经网络(long short-term memory network, LSTM)的光伏功率组合预测模型。对光伏功率数据进行EEMD分解,得到相应的本征模态分量(intrinsic mode function,IMF)和残差项;引入Kmeans聚类对分解后的序列重构,降低序列复杂度和分量数量;将重构后的子序列输入经ALO优化的LSTM模型进行预测,并将各序列预测结果简单加和作为最终预测值。与目前应用较广泛的EEMD-LSTM模型对比,表明EEMD-Kmeans-LSTM和EEMD-Kmeans-ALO-LSTM模型的预测精度均得到一定程度的提高。  相似文献   

6.
文章提出了一种基于长短期记忆网络(long short term memory network,LSTM),面向光伏发电功率预测的数字孪生模型,并通过迁移学习将此模型应用到其他投入运行时间较短、数据不足的光伏系统发电功率预测中。光伏发电功率由于受到太阳辐照度、温度和一些随机因素的影响,具有较强的间歇性和波动性,因此很难进行精确的光伏功率预测;所提出的数字孪生模型,实现了与光伏系统物理实体的同步和实时更新,因此获得比传统预测方法更准确的预测结果,同时利用从历史数据充足的光伏系统中学到的知识来辅助历史数据有限的光伏系统建立发电功率预测数字孪生模型,不仅可以得到精确的预测结果而且节省了模型训练时间。文中通过Queensland大学开源网站中3个不同站点以及山西晋能清洁能源公司的光伏历史数据验证了所提方法的有效性。  相似文献   

7.
提升精细化的光伏预测技术对电力系统的实时调度运行至关重要。它不仅依赖于预测模型的优劣,还依赖于训练样本日与预测日的相似程度。提出一种基于MIE-LSTM的短期光伏功率预测方法。在建立基于互信息熵(Mutual Information Entropy, MIE)的相关性衡量指标基础上,计算出光伏功率与各气象因素间的互信息熵,从而对高维气象数据进行降维处理。然后,利用历史日与预测日多维气象因素间的加权互信息熵筛选出相似日样本。最后,通过长短期记忆(Long-short Term Memory, LSTM)神经网络预测模型训练并建立气象因素与光伏出力之间的映射关系。通过对某实测光伏电站不同天气类型下的发电功率进行预测分析,验证了新方法能够达到理想的预测精度。  相似文献   

8.
以进一步提高光伏输出功率短期预测的准确性和可靠性为目标,针对传统Elman神经网络权值和阈值盲目随机的缺点以及光伏输出功率信号波动性和非平稳性的特点,提出一种基于变分模态分解(VMD)和灰狼优化算法(GWO)优化Elman神经网络的光伏输出功率短期预测模型。首先,使用K-means算法对原始数据按天气类型进行聚类;然后,使用VMD对每一类型天气光伏输出功率数据进行分解,分别将各分解子序列输入经GWO优化的Elman神经网络进行光伏输出功率预测;最后,将各预测结果进行叠加。实例证明:该模型的预测精度有所提升。  相似文献   

9.
准确预测光伏发电功率是保障含分布式电网平稳运行的关键环节。为提升反向传播神经网络(BPNN)功率预测精度,提出一种基于Logistic混沌映射的麻雀搜索算法(LCSSA)以改进BPNN的预测模型。利用相关性分析确定光伏发电功率的影响因素,并引入与天气类型密切相关的晴空指数作为选取相似日的气象因素;利用欧氏距离和马氏距离组合加权法选取训练集;建立LCSSA-BPNN功率预测模型,利用实测数据对比分析所提LCSSA-BPNN模型与SSA-BPNN、BPNN模型的预测精度。结果表明:在晴天、阴天、雨天3种情况下,LCSSA-BPNN模型预测值的平均相对误差率分别为9.52%、10.52%和11.56%,均优于其他对比模型,说明LCSSA-BPNN预测模型具有更好的适应性和预测性能。  相似文献   

10.
郑雨 《电工技术》2024,(6):32-35
针对传统光伏功率超短期预测算法精度不高的问题,提出一种基于改进变分模态分解的长短期记忆网络的光伏功率预测模型。首先利用Pearson相关系数分析光伏功率影响因素,其次利用基于蚁群算法优化的变分模态分解对光伏功率序列进行分解,并将各模态分量级气象因素作为长短期记忆网络的输入,得到预测功率。仿真结果表明,与BPNN、LSTM模型相比,所提出的预测模型具有较高的预测精度,可为光伏电站功率预测提供参考。  相似文献   

11.
准确预测光伏系统的输出功率对微网系统的优化调度具有重要意义。为了减小光伏系统输出功率短期预测误差,文中采用多层感知器(Multi Layer Perceptron, MLP)神经网络作为主要的预测载体,将光照强度、温度、风速数据作为MLP的输入,光伏系统的输出功率作为MLP的输出,采用光伏电站的历史数据对MLP进行训练,并针对MLP在初始化权重和偏置量中存在的随机性问题,提出运用改进灰狼算法(Grey Wolf Optimizer, GWO)对MLP的初始权重和偏置量进行优化,减小MLP随机初始化的误差。仿真结果显示,文中提出的GWO-MLP在均方误差(Mean Square Error, MSE)、均方根误差(Root Mean Square Error, RMSE)、平均绝对误差(Mean Absolute Error, MAE)方面较MLP、Elman神经网络、支持向量机(Support Vector Machine, SVM)、极限学习机(Extreme Learning Machine, ELM)都有明显提高,表明所提方法可以准确预测光伏系统的输出功率。  相似文献   

12.
武天雨  王宁 《电气应用》2021,40(6):17-23
由于具有随机性与间歇性,属于清洁能源的光伏发电也给电网的稳定运行带来不利影响,因此需要对光伏出力进行准确预测,以便进行合理调度,保障电网安全性与经济收益.通过光伏出力的特性公式与实际物理环境挖掘影响光伏出力的影响因素,针对阴天情况将影响因素进行组合并纳入多变量灰色模型并进行预测建模,对光伏阵列在短期内的出力值进行预测.最后进行模型准确度的评估与误差定量分析,得出该方法可行性较高的结论.  相似文献   

13.
针对短期光伏发电功率预测输入特征数据冗余,抗干扰能力差,预测精度受限等问题,提出了基于特征因素选取的IVMD-GLSSVM短期光伏出力预测模型。首先利用GRA-KCC对影响特征因素进行分析,提取影响光伏发电功率的极相关特征因素,随后采用IVMD对光伏发电数据进行分解,降低数据非线性和波动性对预测精度的影响。然后将各模态分量分别输入GLSSVM预测模型进行预测,求得的各子序列预测结果叠加即为最终预测结果。最后在 MATLAB中对该预测模型及其他模型进行算例验证和误差分析,结果表明采用所提预测模型抗干扰能力强,预测精度高。  相似文献   

14.
基于风光混合模型的短期功率预测方法研究   总被引:1,自引:1,他引:1       下载免费PDF全文
准确地预测风力发电及光伏发电的输出功率对提高风光互补供电系统的调度质量具有重要意义。建立了基于BP神经网络的风光混合预测模型,将现有技术中分两次预测的风电功率和光伏功率采用同一个预测模型,同时实现整个区域风电场及光伏电站的输出功率预测,在简化预测方法的同时提高预测准确度。通过某海岛的风电及光伏电站的实际数据验证,计算分析了预测误差。结果表明该方法具有较高的预测精度,对风光混合的功率预测具有一定的学术价值和工程实用价值。  相似文献   

15.
准确预测光伏发电功率对于保障电力系统安全稳定和经济运行具有重要意义.提出一种基于改进骨干差分进化算法(IBBDE)优化最小二乘支持向量机(LSSVM)的光伏发电功率预测模型.IBBDE算法采用广义反向学习初始化种群和自适应调整交叉概率对骨干差分进化算法进行改进以提升算法的全局寻优能力,利用IBBDE算法优化LSSVM预...  相似文献   

16.
随着新能源的大规模利用,光伏渗透率稳步增长,准确的光伏功率预测能为电网企业带来较多效益。基于此提出了一种多特征分析提取的随机森林预测模型,用于超短期光伏功率预测。首先,对收集到的光伏数据进行预处理,清理缺失值和重复值;再次,对影响因素进行相关性分析,选取相关性强的因子;然后,对筛选后的因子进行输入特征量选择,将处理后的特征向量作为预测模型的输入;最后,建立随机森林预测模型,并与BP、RBF、MLP模型对比。实证结果表明,所提模型具有较好的拟合度和更高的预测精度,对光伏预测工作有一定的指导意义。  相似文献   

17.
考虑到风力发电具有波动和不确定的特点,难以预测,文章提出了基于卷积神经网络和LightGBM算法相结合的新型风电功率预测模型.通过分析风电场与相邻风电场原始数据的时序特征,构建出新的特征集;应用卷积神经网络(CNN)从输入数据中提取信息,基于数据间的对比结果调整相应参数;为了提高预测结果的准确性和鲁棒性,将LightGBM分类算法加入模型中.对比所提模型与支持向量机以及单一的LightGBM和CNN模型仿真结果,证明所提模型具有更好的精度和相率.  相似文献   

18.
风电场功率短期预测对并网风力发电系统的运行有着重要意义,在考虑风速、温度、海拔等影响风电功率的主要因素的基础上,为提高风电场短期输出功率的预测精度,提出基于风速与风电功率的融合预测模型。首先针对风电功率的直接预测,采用自回归时间序列和广义回归神经网络的组合模型来预测;然后再利用该组合模型预测风速,根据风速与风电功率的关系间接求出预测的风电功率;最后将前两种组合预测模型进行再次组合,得到融合预测模型。以吉林洮北风电场的短期功率预测为例,运用Matlab软件编程实现本文所提出的算法,验证模型的准确性与可行性,得到融合预测模型的预测相对误差为7.156%,可有效提高大型风电场输出功率的预测精度。  相似文献   

19.
针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variationalmodedecomposition, VMD)和改进松鼠觅食算法优化核极限学习机(improvedsquirrelsearchalgorithm optimization kernel extreme learning machine, ISSA-KELM)的预测模型。首先,利用高斯混合模型(Gaussian mixture model, GMM)将光伏发电功率数据进行聚类,得到不同天气类型下的相似日样本。其次,利用VMD对原始光伏发电功率序列进行平稳化处理,得到若干个规律性较强的子序列。然后,对不同子序列构建KELM预测模型,并使用ISSA优化KELM的核参数和正则化系数。最后,将不同子序列的预测值进行重构,得到最终预测结果。结合实际算例,结果表明:所提出的VMD-ISSA-KELM模型在不同天气条件下均能得到满意的预测精度,且明显优于其他模型,验证了其有效性和优越性。  相似文献   

20.
光伏发电功率具有不确定性和波动性,准确预测光伏发电功率对提高光伏并网效率和保持电网安全运行具有重要作用.对江苏某地区光伏发电站的功率特性进行分析,使用小波降噪处理历史功率曲线,并对各气象条件使用灰色关联分析筛选出强相关影响因素,减少输出功率噪声和无关气象条件对功率预测的影响.将小波降噪处理后的历史输出功率及强相关特性构...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号