共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
采用共沉淀法制备前驱体Ni0.8Co0.1Mn0.1(OH)2,与LiOH·H2O球磨混合,通过高温固相法烧结,合成锂离子电池用高镍基三元正极材料Li(Ni0.8Co0.1Mn0.1)1-xZrxO2。通过XRD、SEM、X射线光电子能谱及充放电测试,分析ZrO2掺杂量为1%、2%和3%时,材料的结构、形貌、表面过渡金属元素价态及电化学性能。当掺杂量为2%时,以0.5 C在2.5~4.3 V充放电,材料的放电比容量为193.5 mAh/g,50次循环的容量保持率为92.9%,优于未掺杂的LiNi0.8Co0.1Mn0.1O2。 相似文献
3.
钴基氧化物热电材料研究现状与展望 总被引:7,自引:0,他引:7
综述了钴基氧化物热电材料国内外研究新进展,着重介绍NaxCo2O4热电材料的晶体结构、热电性能及制备方法;并对Ca-Co-O系列的CaCo2O4、Ca2Co2O5、Ca3Co2O6、Ca3Co4O9和Ca9Co12O28共5种不同结构的热电材料及Bi2Sr3Co2Oy、稀土系钴基氧化物RCoO3等氧化物热电材料作了介绍。还总结了为提高热电性能而进行的掺杂研究。最后展望了氧化物热电材料的发展前景。 相似文献
4.
5.
采用溶胶-凝胶-自蔓延燃烧法合成了LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4两种高电压正极材料。通过X射线衍射(XRD)表明铬离子掺杂未改变LiNi0.5Mn1.5O4的晶型结构,但改善了其晶型生长。扫描电镜(SEM)表明两种样品呈规则正八面体外形,颗粒较均匀,LiNi0.5Mn1.5O4平均粒径大约为400 nm,LiCr0.1Ni0.45Mn1.45O4平均粒径大约为200 nm。电化学性能测试结果表明,在1 C放电倍率下,两种电池的首次放电比容量分别为111.0 mAh/g和121.5 mAh/g,以容量保持率为首次放电比容量85%为截止条件,分别可以实现32个和51个稳定循环。在此条件下,LiCr0.1Ni0.45Mn1.45O4/Li电池的平均中值电压为4.55 V,略高于LiNi0.5Mn1.5O4/Li电池4.51 V。倍率性能测试结果表明,LiCr0.1Ni0.45Mn1.45O4/Li电池及LiNi0.5Mn1.5O4/Li电池在0.5 C、1 C下放电比容量分别可保持0.2 C时的91.9%、87.1%和91.1%、83.6%。铬离子掺杂可明显改善LiNi0.5Mn1.5O4的综合性能。 相似文献
6.
采用一步水热法和煅烧法制备了Co3O4电极材料,通过物相、形貌表征和电化学测试发现,制备的Co3O4具有羽毛状二维网络结构,可以增加与电解液的接触面积,增加了活性位点,提高了电化学性能;制备的Co3O4电极材料的比电容达到了679.51 F/g,其循环伏安测试曲线以及恒电流充放电测试曲线对称性完美,材料可逆性良好,材料的阻抗较低;在1 A/g电流密度下进行恒电流充放电测试,3 000次循环后,其比电容仍然能保持初始值的79.3%,电化学稳定性良好;Co3O4电极材料具有优异的电化学性能,在超级电容器电极应用方面具有广阔的应用前景。 相似文献
7.
正极材料LiNi1/3Co1/3Mn1/3O2的研究进展 总被引:1,自引:0,他引:1
介绍了LiNi1/3Co1/3Mn1/3O2的晶体结构和作为锂离子电池正极材料的电化学反应特征,总结了合成条件和制备方法对其物理性能和电化学性能的影响,以及不同掺杂元素(B,F,Mg,Fe,Al,Si等)对其的改性作用. 相似文献
8.
四氧化三钴(Co3O4)作为锂离子电池负极材料,具有较高的理论比容量,其颗粒形貌与大小对电化学储锂性能有明显影响。采用电解法和沉淀法分别制备颗粒状、片层状和八面体状Co3O4。用SEM和XRD对制备的Co3O4进行形貌和结构分析,并研究不同形貌Co3O4作为负极材料的电化学储锂性能。八面体状Co3O4具有良好的电化学储锂性能和循环稳定性,样品以0.2 C在0~3.0 V循环的首次放电比容量达1 162.2 mAh/g;经过100次循环后,放电容量保持率为73%。八面体状Co3O4具有最小的表面能,有利于形成均匀致密的固体电解质相界面(SEI)膜,提升材料的储锂性能。 相似文献
9.
采用液相共沉淀法合成Co3O4,再采用化学聚合法合成聚苯胺(PANI),然后通过快速研磨混合制备聚苯胺/Co3O4材料作为H2O2的阴极还原催化剂。并利用X射线衍射和扫描电镜分析其结构和表面形貌,利用电势线性扫描和计时电流法测定其对H2O2在碱性KOH电解液中的还原的电催化性能。结果表明:在3 mol/L KOH电解液中,当H2O2浓度为0.4 mol/L时,聚苯胺/Co3O4材料对H2O2的阴极还原具有较好的催化性能,当用20%(质量百分比)PANI掺杂时,在-0.34 V时极限还原电流密度达-111.3 mA/cm2,且材料电化学稳定性较好。 相似文献
10.
11.
以醋酸镁为Mg2+的掺杂源,在空气气氛下采用分段固相法合成了掺杂Mg2+的尖晶石Li4Ti5O12。通过扫描电镜(SEM)、X射线衍射(XRD)及电化学等测试手段对材料的性能进行表征。结果表明:掺杂未有改变材料的尖晶石结构,掺杂后样品的0.2 C首次放电比容量比未掺杂样品略有降低,但显示出优异的电化学倍率性能和循环稳定性,以10 C充放电时,放电比容量是未掺杂的2.2倍,且10次循环之后容量没有明显衰减。电化学交流阻抗研究表明,掺杂Mg之后材料的电荷转移阻抗Rct从130Ω降到20Ω,显著地提高了材料的电子导电性。 相似文献
12.
高镍三元材料(LiNi1-x-yCoxMnyO2,NCM,x+y≤0.4)能量密度高、成本低,但存在容量衰减快、存储过程中产气等问题。金属氟化物常用来包覆正极材料,以改善电化学性能,但存在处理过程繁琐、包覆层不均匀和易生成强腐蚀性气体等缺陷。通过简单高效的球磨法,在高镍三元正极材料LiNi0.83Co0.12Mn0.05O2表面包覆薄且均匀的氟化铝(AlF3)和硼酸(H3BO3)涂层。该复合涂层没有影响材料的层状结构,有利于Li+的嵌脱。均匀致密的涂层可充当保护层,阻挡电解液腐蚀,减轻电极与电解液之间的副反应。以0.2 C在2.50~4.25 V充放电,AlF3和H3BO3复合包覆正极的比容量提高到205.3 mAh/g,未改性材料为198.0 mAh/g;组装... 相似文献
13.
层状LiNi1/3Co1/3Mn1/3O2正极材料合成及电化学性能 总被引:1,自引:0,他引:1
首次提出以碳酸盐为沉淀剂,采用共沉淀法制备Ni1/3Co1/3Mn1/3CO3前驱体,再和锂源混合高温固相合成了锂离子蓄电池层状LiNi1/2Co1/3Mn1/3O2正极材料.采用X射线衍射(XRD)和电子扫描电镜(SEM)对Ni1/3Co1/3Mn1/3CO3前驱体和LiNi1/3Co1/3Mn1/3O2正极材料的结构及形貌进行了表征,SEM测试表明LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀.并对其进行了充放电性能和循环伏安研究,实验结果表明LiNi1/3Co1/3Mn1/3/3O2在25℃、2.5~4.6
V电压范围,0.1 C倍率下,首次放电比容量达182.97 mAh/g. 相似文献
14.
以CH3COOLi·2 H2O和Ti(OC4H9)4为原料,C6H15NO3为络合剂,CH3CH2OH为溶剂,采用溶胶-凝胶法制备Li4Ti5O12材料,并且复合掺杂Mg、Mn、Ni、Co四种金属。采用X射线衍射(XRD)、扫描电镜、电化学阻抗(EIS)分析研究了材料的结构、形貌和电化学性能。结果表明:掺杂Mn、Mg两种金属的Li4-x MgxTi5-yMnyO12材料,其中x=0.02,y=0.02时所制备的Li3.98Mg0.02Ti4.98Mn0.02O12样品,具有良好的电化学性能。在1~2.5V进行充放电,0.1C时,首次放电容量达到154.7 mAh/g。在0.2C、0.5C、1.0C下循环20次后,稳定在107.2、99.3、73.9 mAh/g。再次进行0.1C充放电时,放电比容量为110.8 mAh/g,容量保持率为75%。掺杂金属改善了Li4Ti5O12材料的导电性,提高了该材料的倍率性能以及循环性能。 相似文献
15.
以LiNO3、Ni(CH3COO)2·4 H2O、Co(CH3COO)2·4 H2O和Mn(CH3COO)2·4 H2O为原料,采用共沉淀-燃烧法在空气中合成了LiNi1/3Co1/3Mn1/3O2.采用原子吸收光谱仪(AAS)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和充放电测试仪对合成产物的成份、形貌、结构和性能进行了表征.实验结果表明,所合成的正极材料LiNi1/3Co1/3Mn1/3O2结晶良好,粒度适中,大小均匀,具有α-NaFeO2型层状有序结构和良好的电化学性能,在2.5~4.35 V电压区间充放电,其首次放电比容量达到169.05 mAh/g,第50次循环的放电比容量仍有152.83 mAh/g.在深度充电状态下具有良好的结构稳定性. 相似文献
16.
采用共沉淀结合固相反应方法合成了富锂的Li1.2Mn0.54Ni0.13Co0.13O2正极材料,并分别以CeO2和AlF3对这种材料进行了表面包覆改性。采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)等方法表征材料的结构和形貌。所合成的球形Li1.2Mn0.54Ni0.13Co0.13O2材料为层状晶体结构。AlF3可以均匀包覆在Li1.2Mn0.54Ni0.13Co0.13O2材料表面,包覆层厚度约为2 nm。AlF3包覆后富锂材料的电化学性能提升效果优于CeO2。AlF3包覆量为1%时,该富锂三元氧化物正极材料的首次充放电效率、容量保持率及倍率性能得到了显著的提高。EIS分析表明,AlF3包覆可避免富锂三元氧化物正极材料与电解液的直接接触,降低了传荷阻抗,从而有效提高了材料的电化学性能。 相似文献
18.
以NH3.H2O为沉淀剂,利用化学共沉淀法制备粒径分布均匀的超顺磁性纳米Fe3O4粒子。针对Fe3O4纳米粒子易团聚的现象,采用有机化合物油酸对其进行表面改性。采用X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶红外光谱仪(FT-IR)及振动样品磁强计(VSM)等手段对Fe3O4纳米粒子进行结构与性能表征。结果表明,所得Fe3O4纳米粒子平均粒径为20nm、粒径分布窄、饱和磁化强度为70.29 A.m2/kg,矫顽力为零,具有超顺磁性。利用油酸进行表面改性可有效降低Fe3O4纳米粒子的团聚,使其分散度得到提高。 相似文献
19.
20.
在聚合物锂离子蓄电池正极材料常规制备工艺的基础上开发了球磨干混-旋转振动高温固相合成新工艺,合成了正极改性材料LiNi0.7Co0.3O2.研究了原材料、煅烧条件等工艺过程参数对合成产物结构、微观形貌及充放电性能的影响.通过本工艺制得的LiNi0.7Co0.3O2颗粒均匀细致,平均粒径约为10
μm,放电初始比容量达177 mAh/g. 相似文献