首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate leaching as affected by cropping system/crop rotation, history of farmyard manure application or fertilizer nitrogen application (0 N, 0.5 N and 1 N) was studied at nine sites on loamy soils during 1986/87, 1987/88 and 1988/89. Soil solution from 80 to 90 cm soil depth was sampled every second week in the period November to May by the use of porous ceramic cups and analysed for NO3-N and Cl. Climatical conditions were obtained from standard meteorological observations in the region. Drainage from soil profiles was calculated from measured and simulated values of precipitation and actual evapotranspiration, respectively.The results show that type of crop is of the utmost importance for the leaching magnitude of nitrate as 40% of the total variance in nitrate concentrations in the soil solution could be explained by the type of crop.The second factor of importance was the history of farmyard manure (FYM) application, which was able to explain 28% of the total variation in nitrate concentration in the soil solution. Nitrate concentration/leaching from arable land without FYM ever being applied was considerably lower than from arable land which received periodical FYM applications until the early 70's or from arable land which besides periodical FYM applications in the past presently still receives regular applications of FYM. Only about 1% of the total variation in nitrate concentration in the soil solution was explainable by the level of fertilizer nitrogen application.Differences between years explained 14% of the total variation in nitrate concentration in the soil solution due to differences between the years in soil temperatures and water run-off. The run-off during the autumn and winter of 1986/87, 1987/88 and 1988/89 was 95, 275 and 55 mm, respectively. As expected nitrate leaching increased with increasing run off. However, nitrate leaching at the 275 mm run off was considerably lower than expected, which seems explainable by a substantial denitrification. The soil at the sites in question seems thus partly to purify the soil solution for nitrate before it leaves the root zone at the observed high run off conditions.  相似文献   

2.
Experiments were conducted to monitor the movement and distribution of ammonium-N after placement of urea and ammonium sulfate supergranules at 5, 7.5, 10, and 15 cm. By varying depths of fertilizer placement, it is possible to determine the appropriate depth for placement machines. There were no significant differences in grain yields with nitrogen placed 5 and 15 cm deep. However, grain yields were significantly higher with deep placement of nitrogen than with split application of the fertilizer. The lower yields with split-applied nitrogen were due to higher nitrogen losses from the floodwater. The floodwater with split application had 78–98µg N ml–1 and that with deep-placed nitrogen had a negligible nitrogen concentration.Movement of NH 4 + -N in the soil was traced for various depths after fertilizer nitrogen application. The general movement after deep-placement of the ammonium sulfate supergranules was downward > lateral > upward from the placement site. Downward movement was prevalent in the dry season: fertilizer placed at 5–7.5 cm produced a peak of NH 4 + -N concentration at 8–12 cm soil depth; with placement at 15 cm, the fertilizer moved to 12–20 cm soil depth. Fertilizer placed at 10 cm tended to be stable. In the wet season, deep-placed N fertilizer was fairly stable and downward movement was minimal.A substantially greater percentage of plant N was derived from15N-depleted fertilizer when deep-placed in the reduced soil layer than that applied in split doses. The percent N recovery with different placement depths, however, did not vary from each other. The results suggest that nitrogen placement at a 5-cm soil depth is adequate for high rice yields in a clayey soil with good water control. In farmers' fields where soil and water conditions are often less than ideal, however, it is desirable to place nitrogen fertilizer at greater depths and minimize NH 4 + -N concentration in floodwater.  相似文献   

3.
Enhancing crop production by maintaining a proper synchrony between soil nitrogen (N) and crop N demand remains a challenge, especially in under-studied tropical soils of Sub-Saharan Africa (SSA). For two consecutive cropping seasons (2013–2015), we monitored the fluctuation of soil inorganic N and its availability to maize in the Tanzanian highlands. Different urea-N rates (0–150 kg N ha?1; split into two dressings) were applied to two soil types (TZi, sandy Alfisols; and TZm, clayey Andisols). In the early growing season, soil mineralized N was exposed to the leaching risk due to small crop N demand. In the second N application (major N supply accounting for two-thirds of the total N), applied urea was more efficient in increasing soil inorganic N availability at TZm than at TZi. Such effect of soil type could be the main contributor to the higher yield at TZm (up to 4.4 Mg ha?1) than that at TZi (up to 2.6 Mg ha?1) under the same N rate. The best-fitted linear-plateau model indicated that the soil inorganic N availability (0–0.3 m) at the tasseling stage largely accounted for the final yield. Further, yields at TZi were still limited by N availability at the tasseling stage due to fast depletion of applied-N, whereas yields plateaued at TZm once N availability was above 67 kg N ha?1. Our results provided a valuable reference for designing the N management to increase yield, while minimizing the potentially adverse losses of N to the environment, in different agro-ecological zones in SSA.  相似文献   

4.
Nutrient Cycling in Agroecosystems - The nitrogen (N) fertilizer application rate (kg ha?1 year?1) in pastoral dairy systems affects the flow of N through the soil,...  相似文献   

5.
Cotton root growth as affected by P fertilizer placement   总被引:1,自引:0,他引:1  
Growth chamber studies were conducted to evaluate root growth and P uptake by cotton (Gossypium hirsutum L.) as affected by the proportion of the soil volume that is treated with fertilizer P. Cotton seedlings were grown in a Dewey silty clay loam (Typic Paleudult) and a Marvyn loamy sand (Typic Paleudult). The Dewey soil had a low-P status and the Marvyn soil had a high-P status (7 and 44 mg kg–1 Mehlich I extractable P, respectively). Phosphorus was added at a constant or base rate which was added to decreasing proportions of the soil volume (i.e. 1.0, 0.5, 0.25 and 0.125). The addition of the same amount of P to decreasing proportions of the soil volume resulted in a stimulation of root growth in the P-fertilized soil volume relative to the nonfertilized soil. The degree of stimulation was similar for the two soils which differed in P status. Phosphorus uptake reached a maximum when 0.25 and 0.50 of the soil volume was treated with P on the Marvyn and Dewey soils, respectively.  相似文献   

6.
The efficient use of water and nitrogen represents a primary concern to agricultural production in Northwest China. A 2-year field experiment was conducted to assess the separation of nitrogen (N) fertilizer and irrigation water with alternating furrow irrigation (SNWAFI) in a maize (Zea mays L.) production system. Irrigation water use efficiency and nitrogen use efficiency with SNWAFI were generally greater than with conventional irrigation and fertilization (CIF). Response surfaces indicated that maximum maize yields were obtained with 238 kg urea-N ha?1 and 106 mm irrigation water in 2008 and 244 kg urea-N ha?1 and 95 mm of irrigation water in 2009. When the predicted yields were highest (6,384 and 6,549 kg ha?1), water use efficiency, N uptake, and N use efficiency were greater with SNWAFI than CIF. Conversely, soil NO3–N change during maize growing season decreased with SNWAFI compared CIF. With SNWAFI, optimizing irrigation water and N fertilizer rates can maximize yield, save irrigation water, and reduce N leaching.  相似文献   

7.
A 19-year field experiment on a Mollisol agroecosystem was carried out to study the productivity of a wheat-maize-soybean rotation and the changes in soil carbon and nutrient status in response to different fertiliser applications in Northeast China. The experiment consisted of seven fertiliser treatments: (1) unfertilised control, (2) annual application of P and K fertilisers, (3) N and K fertilisers, (4) N and P fertilisers, (5) N, P and K fertilisers, (6) N, K and second level P fertilisers, and (7) N, P and second level K fertilisers. Without fertiliser, the Mollisols could support an average yield of 1.88 t ha−1 for wheat, 3.89 t ha−1 for maize and 2.12 t ha−1 for soybean, compared to yields of 3.20, 9.30 and 2.45 t ha−1 respectively for wheat, maize and soybean if the crop nutrient demands were met. At the potential yield level, the N, P and K removal by wheat are 79 kg N ha−1, 15 kg P ha−1, and 53 kg K ha−1, by maize are 207 kg N ha−1, 47 kg P ha−1, and 180 kg K ha−1, by soybean are 174 kg N ha−1, 18 kg P ha−1, and 55 kg K ha−1. Crop yield, change in soil organic carbon (SOC), and the total and available nutrient status were used to evaluate the fertility of this soil over different time periods. This study showed that a fertiliser strategy that was able to maintain yields in the short term (19 years) would not maintain the long term fertility of these soils. Although organic carbon levels did not rise to the level of virgin soil in any treatment, a combination of N, P and K fertiliser that approximated crop export was required to stabilise SOC and prevent a decline in the total store of soil nutrients.  相似文献   

8.
氮钾肥生产控制过程与传统的三元复合肥参数控制差别较大。介绍了中国-阿拉伯化肥有限公司氮钾肥生产中工艺选择、配方优化、工艺参数控制等应注意事项。  相似文献   

9.
马凯  马培华  贲艳英 《磷肥与复肥》2010,25(1):13-14,17
论述了近年国内外生产和施用的氮肥中所含铵态氮和硝态氮的比例关系。硝态氮肥产量占全球氮肥总产量:世界约14%,欧盟约40%,而我国仅占2%。消费结构比例与产量比例相近。世界最大3家氮肥生产商Yara、Terra和PCS的主要产品为硝铵尿素溶液、硝酸盐等含硝态氮产品,产量和销售量占其氮肥总量的50%以上。加快发展我国硝基肥产业,提高硝态氮肥施用量,对优化我国施肥结构、提高肥料利用率有重要意义。  相似文献   

10.
Mucuna pruriens has emerged as a successful forage or green manure legume for use in the smallholder animal-livestock systems of Zimbabwe. The efficiency of N recovery from mucuna residues in subsequent maize crops can be low and the loss of nitrate nitrogen from the soil profile prior to maize N demand is proposed as a reason for this. An experiment was established in the 1999–2000 wet season at seven on-farm sites in a communal farming district of Zimbabwe (average rainfall 650–900 mm) on acidic (pH < 5), and inherently infertile soils with texture ranging from sandy/sandy loam (n = 5) to clay (n = 2). Improved fallows of mucuna grown for 19 weeks produced between 4.7 and 8.5 t/ha dry matter (DM) at the sandy/sandy loam sites and between 9.5 and 11.2 t/ha DM at the clay sites. This biomass was then either cut and removed as hay, or ploughed in as a green manure. Weedy fallow treatments, which represent typical farmer practice, produced 3.3–6.3 t/ha DM. A maize crop was then grown on these same sites in the following 2000–2001 wet season and the dynamics of soil N and C and maize production were investigated. Where mucuna was green manured, a positive linear response (r2 = 0.72) in maize yield to increasing mucuna biomass (containing 101–348 kg N/ha) was found. On the sandy sites, and where no P fertiliser was applied to the previous mucuna phase, a maize grain yield of 2.3 t/ha was achieved following the mucuna green-manure system; this was 64% higher than the maize yield following the weedy fallow and 100% higher than the maize yield following the mucuna removed hay system. Apparent nitrogen recoveries in the range of 25 to 53% indicate that there are large quantities of nitrogen not utilised by the subsequent maize phase. The loss of 73 kg/ha of nitrate N from the soil profile (0–120 cm) early in the wet season and prior to maize N demand is proposed as a reason for low N recovery. No change in labile C (measured with 333 mM KMnO4) was detected through the soil profile at this time and it is suggested that labile C movement occurred between the sampling times.  相似文献   

11.
A field experiment conducted for two years (1977 and 1978) at the Indian Agricultural Research Institute, New Delhi showed that yield and nitrogen uptake by rice was more in the case of medium duration (135 days) variety Improved Sabarmati than in the case of the short duration (105 days) variety Pusa-33. Highest yield and nitrogen uptake by rice was recorded when it was transplanted and lowest when rice was direct-seeded (drilled in moist soil). Broadcasting sprouted seeds on puddled seed bed gave yield and nitrogen uptake in between transplanting and direct-seeding and provides a reasonably acceptable method of planting. Rice responded well to nitrogen and the economic optimum dose was found to be 160–170 kg N ha–1. Urea briquettes gave the highest yield and nitrogen uptake by rice and was superior to sulphur-coated urea or neem-cake-coated urea with respect to N-uptake. All these new nitrogen fertilizers were superior to urea and therefore hold considerable promise in rice culture.  相似文献   

12.
Growth and yield components in field-grown maize (Zea mays L.) were enhanced by nitrogen fertilization ranging from 50 to 200 kg N ha–1. Ear diameter, kernel depth, grain: stover ratio, number of ears plant–1, plant height and dry matter production increased as N fertilization rate was increased up to 100 or 150 kg N ha–1. Tasselling in maize was hastened by N fertilization. Increasing plant density from 25000 to 75000 plants ha–1 increased plant height, dry matter production and delayed tasseling but reduced ear diameter, kernel depth, grain: stover ratio and number of ears plant–1. Increased N supply and plant density had no influence on the concentrations of Mn, Zn, Cu, and Fe in ear leaf; except that Mn concentration increased as N fertilization rate was increased up to 150 kg N ha–1. Nitrogen × plant density interactions on the concentrations of the micronutrients in maize ear leaf were not significant.  相似文献   

13.
Meeting food security requirements in sub-Saharan Africa (SSA) will require increasing fertilizer use to improve crop yields, however excess fertilization can cause environmental and public health problems in surface and groundwater. Determining the threshold of reasonable fertilizer application in SSA requires an understanding of flow dynamics and nutrient transport in under-studied, tropical soils experiencing seasonal rainfall. We estimated leaching flux in Yala, Kenya on a maize field that received from 0 to 200 kg ha?1 of nitrogen (N) fertilizer. Soil pore water concentration measurements during two growing seasons were coupled with results from a numerical fluid flow model to calculate the daily flux of nitrate-nitrogen (NO3 ?-N). Modeled NO3 ?-N losses to below 200 cm for 1 year ranged from 40 kg N ha?1 year?1 in the 75 kg N ha?1 year?1 treatment to 81 kg N ha?1 year?1 in the 200 kg N ha?1 treatment. The highest soil pore water NO3 ?-N concentrations and NO3 ?-N leaching fluxes occurred on the highest N application plots, however there was a poor correlation between N application rate and NO3 ?-N leaching for the remaining N application rates. The drought in the second study year resulted in higher pore water NO3 ?-N concentrations, while NO3 ?-N leaching was disproportionately smaller than the decrease in precipitation. The lack of a strong correlation between NO3 ?-N leaching and N application rate, and a large decrease in flux between 120 and 200 cm suggest processes that influence NO3 ?-N retention in soils below 200 cm will ultimately control NO3 ?-N leaching at the watershed scale.  相似文献   

14.
Fifteen field trials were conducted to evaluate soil mineral N measurement as a means for quantifying the total N supply to forage maize and so to form the basis for fertilizer recommendations on a crop-specific basis. In every trial, 4 rates of cattle manure N (nominally 0, 80, 160, 240 kg N per ha) and 4 rates of ammonium nitrate (0, 50, 100, 150 kg N per ha) were factorially combined. Soil mineral N measurements were made before manure application, at the time of maize drilling, 7-10 weeks after drilling and after harvest. Measurements on control treatments which received no manure or ammonium nitrate showed extensive net mineralisation of soil N (mean 140 kg N per ha) in the 7-10 weeks after drilling followed by a decrease due to crop uptake, and probably net immobilisation, of approximately the same amount by harvest. This net mineralisation was probably the reason why only one trial showed a significant dry-matter yield response to ammonium nitrate. Results indicated that , to be useful for N recommendations, soil mineral N measurements should be taken 7-10 weeks after drilling. Only if the amount of mineral N at this time is less than expected crop N offtake should fertilizer N be applied. A mean of around 64% of the N applied in ammonium nitrate could be accounted for in soil mineral N after harvest of the maize, although this was reduced to 24% in the single trial where a dry-matter response to ammonium nitrate was recorded.  相似文献   

15.
Nitrous oxide (N2O) emission from farmland is a concern for both environmental quality and agricultural productivity. Field experiments were conducted in 1996–1997 to assess soil N2O emissions as affected by timing of N fertilizer application and straw/tillage practices for crop production under irrigation in southern Alberta. The crops were soft wheat (Triticum aestivumL.) in 1996 and canola (Brassica napusL.) in 1997. Nitrous oxide flux from soil was measured using a vented chamber technique and calculated from the increase in concentration with time. Nitrous oxide fluxes for all treatments varied greatly during the year, with the greatest fluxes occurring in association with freeze-thaw events during March and April. Emissions were greater when N fertilizer (100 kg N ha−1) was applied in the fall compared to spring application. Straw removal at harvest in the fall increased N2O emissions when N fertilizer was applied in the fall, but decreased emissions when no fertilizer was applied. Fall plowing also increased N2O emissions compared to spring plowing or direct seeding. The study showed that N2O emissions may be minimized by applying N fertilizer in spring, retaining straw, and incorporating it in spring. The estimates of regional N2O emissions based on a fixed proportion of applied N may be tenuous since N2O emission varied widely depending on straw and fertilizer management practices. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha–1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha–1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha–1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha–1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.  相似文献   

17.
Nutrient Cycling in Agroecosystems - We conducted a field experiment on a 53&;nbsp;%-slope in Northwest Vietnam using 15N-labelled urea to trace its fate in maize (Zea mays) under intensive...  相似文献   

18.
化学肥料的溶解度与复混肥生产工艺   总被引:2,自引:2,他引:0  
阐述化学肥料溶解度与肥料品种、温度有关,而它又影响肥料的粘性及复混肥的成粒过程。分析高浓度复混肥应在60~65℃温度下造粒,则生产高浓度复混肥的两大难点(物料粘性差,不易成粒;物料溶解度大,干燥易出现大团)可迎刃而解。论述不同造粒条件,生产不同浓度复混肥时,其干燥机的功能结构及抄板设计。最后对复混肥不崩解原因及解决方法进行了讨论。  相似文献   

19.
Changes in quantity of soil mineral nitrogen down to a depth of 1 m in cloverfree grassland were monitored within one growing season and over successive growing seasons. Accumulation of mineral nitrogen in the soil occurred on permanent grassland with split application of nitrogen totalling more than 400 kg N ha–1 yr–1 and on young grassland, sown after arable crops, with applications of more than 480 kg N ha–1 yr–1. The relationship between the rate of nitrogen application minus nitrogen uptake, and accumulation of mineral nitrogen in the upper 50 cm of soil during each growing season is described.  相似文献   

20.
Soy hulls were evaluated as a source of adsorbent carbon for vegetable oil processing. Soy hull carbon was prepared by burning ground soy hulls (<100 mesh) at 300, 400, 500, or 700°C in a muffle furnace. The structure of the soy hull carbon was studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Crude soy oil was processed with the soy hull carbon products at 2% (w/w) in the laboratory under commercial bleaching conditions. Free fatty acids (FFA), peroxide value, phospholipid phosphorus (PLP), and lutein content of the treated samples were determined. SEM of the samples revealed particle size ranging from 1 to 2 mm. Increasing the pyrolysis temperature resulted in expansion and disruption of cellular structure. FTIR spectra of the carbon samples showed major differences in peak intensities at 3600 to 3200, 1600, and 1450 cm−1 due to pyrolysis temperature. XRD revealed a predominantly amorphous structure with increasing pyrolysis temperature, which also resulted in an increased alkaline surface. Soy hull carbon decreased the FFA content of oil samples compared to that of crude oil, with the exception of carbon that was prepared at 300°C (P<0.05). A similar trend was observed in the adsorption of peroxides; however, no trends were observed in the adsorption of PLP or lutein. Higher pyrolysis temperature decreased randomness of the carbon and imparted a certain degree of structural order. This may be beneficial in providing physical access of the adsorbate molecule to the adsorbent surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号