共查询到20条相似文献,搜索用时 93 毫秒
1.
《计算机应用与软件》2015,(11)
传统的文本信息抽取算法通常基于词典、规则或其他模型实现,但由于词典建立困难、规则设定模糊或模型结构单一等原因,信息抽取的准确性通常较低。针对传统的文本信息抽取算法存在的多种不足,提出一种基于混合模型的文本信息抽取算法。该算法融合了多种信息抽取方法,引入支持向量机对信息进行分类,利用S型函数拟合调整模型参数,并采用数据平滑技术优化模型概率空间。实验结果表明,与传统的文本信息抽取算法相比,该算法信息抽取的精确度和召回率明显提高,具有较好的可行性。 相似文献
2.
3.
针对有向无环图支持向量机的元数据自动抽取机制问题进行了分析和研究,提出了基于此抽取机制和W3C资源描述框架的生物信息数据中的元数据(Meta-Data)自动抽取系统.有效地避免了分类重叠问题和抽取数据统一标记问题,为生物信息系统面向语义网应用扩展提供了整合数据基础.该自动抽取系统在生物信息系统面向语义网中具有广泛的应用前景. 相似文献
4.
5.
为弥补单一模型在识别低空飞行目标时的不足,进一步提高识别概率,提出了一种基于HMM(HiddenMarkov model)和SVMs(Support vector machines)串联结构的低空飞行目标声识别方法.针对战场环境下声信号的特点,该方法综合考虑HMM适合处理连续动态信号及SVM小样本情况下的强分类能力,先由HMM计算各HMM模型与待辨识信号的匹配程度,形成匹配度特征向量,再利用SVM适合分类的优势,对匹配度特征向量做进一步决策,得到最后的识别结果,弥补了单一模型在识别低空飞行目标时的不足.实际数据的识别分析结果表明了该方法在低空飞行目标声识别中的准确性与有效性. 相似文献
6.
论文元数据信息的自由抽取 总被引:1,自引:1,他引:1
为了实现在Web上电子版论文结构的查询,必须提取这些论文的标题、作者,摘要和关键宇等元数据信息,在北京大学数字图书馆科技文献检索系统中利用正则表达式规则对论文数据信息进行自动抽取。该文介绍的这种方法充分利用了论文所特有的结构,在不采用语法分析等复杂的自然语言处理手段的情况下取得了很好的效果,为面向特定领域的元信息抽取作了有益的研究和探索。 相似文献
7.
8.
采用支持向量机(SVM)和隐马尔可夫模型(HMM)相结合的方法进行人脸识别。首先对照片中的人脸进行定位,从定位区域提取人脸各个器官的独立基特征,然后使用支持向量机和隐马尔可夫混合模型对定位区域进行人脸识别。利用SVM和HMM结合的优点,取得较高的识别率。 相似文献
9.
10.
音频自动分类中的特征分析和抽取 总被引:8,自引:1,他引:8
音频特征分析和抽取是音频自动分类的基础,本文将音频对象分为静音,噪音,纯语音,带背景音语音,音乐等5类,从帧层次和段层次上深入分析了不同类音频之间的区别性特征,包括帧层次上的MFCC,频域能量,子带能量,过零率,频谱中心等特征,在此基础上计算了段层次上的基本音频特征,包括静音比率,子带能量比均值等,提出了3个音频”流”特征-High-ZCR比率,Low-Frequency-Energy比率,频谱流量.设计并实现了一种基于支持向量机(support vector machine)的自动分类器,考察了上述特征组成的特征集合在该分类器中的分类性能.实验表明,本文提出的特征有效,分类性能良好. 相似文献
11.
基于SVM-HMM混合模型的说话人确认 总被引:8,自引:0,他引:8
提出一个文本无关的说话人确认的算法。该算法将支持向量机(SVM)的输出通过Sigmoid函数和高斯模型转化为概率,并作为隐式马尔可夫模型(HMM)中各个隐状态的输出概率。由于HMM适于处理连续信号,SVM适于处理分类问题;同时,HMM更多地表达了类别内部的相似性,而SVM则很大程度上反映了类别间的差异,因而根据两者不同的侧重点,使其组合获得了很好的效果。 相似文献
12.
提出了一种传感器动态模型辩识新方法,给出了相应的辩识过程及学习算法.该方法采用支持向量机模型,与常规模型辩识方法比较,其优点是明显的.其采用了结构风险最小化准则,在最小化样本误差的同时减小模型泛化误差的上界,提高了模型的泛化能力;而且将学习算法转换为求解二次规划问题,使得整个模型参数辩识过程中有且仅有一个全局极值点,确定了结果的唯一性.最后,仿真和实际试验结果均表明应用支持向量机对传感器动态模型进行辩识有效. 相似文献
13.
文本分类技术是文本数据挖掘的基础和核心,是基于自然语言处理技术和机器学习算法的一个具体应用。特征选择和分类算法是文本分类中两个最关键的技术,该文提出了利用潜在语义索引进行特征提取和降维,并结合支持向量机(SVM)算法进行多类分类,实验结果显示与向量空间模型(VSM)结合SVM方法和LSI结合K近邻(KNN)方法相比,取得了更好的效果,在文本类别数较少、类别划分比较清晰的情况下可以达到实用效果。 相似文献
14.
利用SVM对大规模数据进行训练时,需要占用很大的内存空间,甚至会因内存不够而无法训练。为此,提出了将大规模数据分块求解,然后将分块求解的结果进行信息融合的新方法。首先训练得到各模块的支持向量,将所有支持向量进行融合,得到决策模型和一组支持向量。当有新的数据加入时,将其作为一个子模块,训练得到该模块的支持向量,与原模型中获得的支持向量进行融合,训练得到新的决策模型。利用KDDCUP99数据进行实验,结果表明该方法的测试精度与在所有数据集上训练的精度相当,花费时间少,适用于增量学习。 相似文献
15.
16.
为了快速地进行分类,根据几何思想来训练支持向量机,提出了一种快速而简单的支持向量机训练算法——几何快速算法。由于支持向量机的最优分类面只由支持向量决定,因此只要找出两类样本中所有支持向量,那么最优分类面就可以完全确定。该新的算法根据两类样本的几何分布,先从两类样本的最近点开始;然后通过不断地寻找违反KKT条件的样本点来找出支持向量;最后确定最优分类面。为了验证新算法的有效性,分别利用两个公共数据库,对新算法与SMO算法及DIRECTSVM算法进行了实验对比,实验结果显示,新算法的分类精度虽与其他两个方法相当,但新算法的运算速度明显比其他两个算法快。 相似文献
17.
事件检测支持向量机模型与神经网络模型比较 总被引:1,自引:0,他引:1
覃频频 《计算机工程与应用》2006,42(34):214-217,232
针对交通领域中的事件检测(无事件模式和有事件模式)模式识别问题,描述了支持向量机(SVM)的基本方法,建立了基于线性(linearfunction)、多项式(polynomialfunction)和径向基(radialbasisfunction)3种核函数的事件检测SVM模型,并与PNN、MLF模型进行了理论比较。采用I-880线圈数据集和事件数据集建立并验证SVM、PNN和MLF模型,结果发现:无论对于向北、向南或混合方向的事件检测,SVM模型的检测率(DR)、误报率(FAR)和平均检测时间(MTTD)指标均比MLF模型好;PNN模型的DR比SVM(P)模型的高,但FAR和MTTD指标不比SVM(P)模型好;在3个SVM模型中,SVM(P)检测效果最好,SVM(L)最差。SVM算法与神经网络算法相比具有避免局部最小,实现全局最优化,更好的泛化效果的优点,是高速公路事件检测的一种很有潜力的算法。 相似文献
18.
关键词是人们快速判断是否要详细阅读文件内容的重要线索,关键词自动抽取在信息检索、自然语言处理等研究领域均有重要应用.设计了一种新的关键词自动抽取方法,使计算机能够像人类专家一样,利用知识库对目标文本进行学习和理解,最终自动抽取出关键词.专利数据因其数据量庞大、内容丰富、表达准确、专业权威而被选中作为知识库来源.详细讨论了专利数据的特性,挖掘不同专利间的知识关联,针对某一知识领域构造背景知识库,在此基础上进行目标文本的关键词自动抽取.与目标文本相关的专利文集中每个专利的专利发明人、权利人、专利引用和分类信息都被用于在不同的专利文档之间发现关联性,利用关联信息扩充背景知识库,获得目标文档在各个相关知识领域的背景知识库.基于背景知识库设计了词知识特征值,以反映词在目标文本背景知识中的重要程度.最后,把关键词抽取问题转化为分类问题,利用支持向量机(support vector machine, SVM)抽取出目标文本的关键词.在专利数据集和开放数据集的实验结果证明明显优于现有算法. 相似文献
19.
基于隐马尔可夫模型的Web信息抽取 总被引:1,自引:1,他引:0
针对Web信息抽取领域中存在的“项缺失”和“项无序”问题,提出一种基于隐马尔可夫模型的Web信息抽取方法。将Web文档解析为一棵扩展的DOM树,映射待抽取的信息项为状态,映射待抽取的信息项在扩展DOM树中的路径为词汇,使用归纳算法构造隐马尔可夫模型。实验结果证明该方法可以获得更好的抽取性能。 相似文献
20.
针对基于支持向量机的Web文本分类效率低的问题,提出了一种基于支持向量机Web文本的快速增量分类FVI-SVM算法。算法保留增量训练集中违反KKT条件的Web文本特征向量,克服了Web文本训练集规模巨大,造成支持向量机训练效率低的缺点。算法通过计算支持向量的共享最近邻相似度,去除冗余支持向量,克服了在增量学习过程中不断加入相似文本特征向量而导致增量学习的训练时间消耗加大、分类效率下降的问题。实验结果表明,该方法在保证分类精度的前提下,有效提高了支持向量机的训练效率和分类效率。 相似文献