首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
离心压气机凹槽导流片式机匣处理失速控制研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对一种新型的可显著改善原有压气机稳定裕度的机匣处理结构,进行了时间精确的三维数值模拟,详细对比分析了带实壁机匣结构和凹槽导流片式机匣处理结构的离心压气机转子叶片项部区域流场,以及叶片通道内子午速度沿径向的分布情况,揭示了凹槽导流片式处理机匣结构的扩稳机理.并通过分析不同参数的凹槽导流片式机匣处理的计算结果,表明:轴向叠合量的增大,对于压气机裕度的改善有利,而不利于压气机的效率提升;处理槽深度的减少,会使压气机稳定裕度有所改善,但峰值点总压比与失速点总压比都有所降低.  相似文献   

2.
为了探索自循环机匣处理扩稳机理,利用全三维数值模拟方法对应用机匣处理的LSCC(低速离心叶轮)进行了详细研究.结果表明:自循环机匣处理能有效的延迟失速的发生并在近失速区域略微提高压气机的效率以及总压比.该机匣处理能有效地减小叶顶载荷,从而降低泄漏流相对速度,抑制间隙泄漏涡在叶顶通道内的发展以减小低速气流在流道内的阻塞,提高转子通道的通流能力,从而达到扩大稳定工作范围的目的,综合稳定裕度改进量为12.57%.  相似文献   

3.
车用增压器的离心压气机在高转速下,往往暴露出流量过窄的问题.通过数值分析,对实壁机匣离心压气机模型高转速下的失速机理进行了研究,结果发现,转速下叶顶区域的流动变为跨音速流动,小流量下槽道激波前移至分流叶片之前,由于采用了长短叶片导致该处叶片稠度较小,间隙泄漏气流跨过激波后扰动迅速扩大,并诱发大量低能流体的堆积,促使压气机过早失稳.同时,对具有扩稳能力的进气回流机匣处理模型也进行了数值模拟,并与试验数据进行了对比验证,结果表明,布置在激波过后的回流槽能有效带走堆积在导风轮尾部附近的低能流体,减少了泄漏二次流对主流的扰动程度,使得气流以较小的攻角流过短叶片前缘,大大改善了叶轮内部流场.  相似文献   

4.
针对某型柴油机增压器压气机,基于整级全通道数值模拟和正交试验设计方法,研究了自循环机匣处理实现高亚声速压气机扩稳增效的潜力。结果表明:自循环机匣能够在提高设计点气动性能的前提下推迟失稳,但会牺牲堵塞流量。压气机的失稳和堵塞流量分别与叶片前缘及叶片扩压器中的堵塞程度相关。小流量侧自循环机匣通过抽吸叶轮叶顶附近低能流体,缓解堵塞,推迟失稳。但在大流量侧自循环机匣的喷射效应会增大扩压器进口攻角,加剧扩压器叶片流动分离,减小堵塞流量。抽吸效应与喷射效应强度均取决于抽吸槽的位置和宽度,压气机稳定性和堵塞流量与抽吸槽参数的变化基本呈负相关。自循环机匣对气动性能的影响包含两方面:在抽吸槽前,经回流槽流出的流体与主流的掺混及其产生的进口畸变将带来额外的效率和压比损失,适当减小回流槽角度可以降低该损失;在抽吸槽下游,得益于抽吸效应对叶顶流动状态的改善,压气机抽吸槽附近及下游高熵区减小,做功能力增强,气动损失大幅降低。在上述两方面共同影响下,压气机设计点气动性能最终得以提高。  相似文献   

5.
为了探究零间隙压气机流动失稳机理,采用全通道非定常数值模拟方法研究了一台零间隙斜流压气 机转子的失稳机理,数值模拟过程中在转子出口施加了随时间动态变化的背压模拟压气机转子节流,非定常 数值计算结果表明零间隙斜流压气机转子仍然表现为典型突尖流动失稳特征。通过详细地分析斜流压气机 转子节流过程中不同阀系数对应的压气机内部流场结构,结果表明:尽管零间隙斜流压气机无叶顶泄漏特 征,但随着对压气机节流,转子叶片尾缘率先出现流动分离,进一步节流,尾缘流动分离表现为一方面在周向 范围加剧,另一方面分离点逐渐向上游移动,造成通道严重堵塞,最终引发相邻叶片通道尾缘回流和叶片前 缘流动溢出进而诱发叶片通道内部出现径向涡结构,从而形成压气机突尖失速先兆。  相似文献   

6.
采用数值模拟的方法对比带/不带自循环机匣处理结构对某型离心压气机性能的影响进行研究。结果表明,自循环机匣处理结构基本不影响设计点压气机效率,可以增加压气机堵塞状态的流量,减小失速状态的流量。同时,文章展示了带/不带自循环机匣处理结构时压气机内部的流场情况,从流场流动的角度分析了自循环机匣结构引起压气机特性变化的原因。带机匣处理结构的压气机,在设计状态下,气流攻角不变,压气机效率基本不变;失速状态下,气流攻角改善,流动更加稳定;堵塞状态下,气流由机匣处理结构流入叶轮喉部下游,增加了叶轮排气流量,拓宽了堵塞流量。  相似文献   

7.
在验证了计算模型的可靠性后,对单级轴流亚音压气机进行了71%设计转速下,实壁机匣,周向槽机匣与梯状间隙结构工作特性的数值模拟。结果表明,周向槽机匣与梯状间隙结构都能在一定范围内起到扩稳作用。周向槽的作用更多地体现在对叶片前缘叶顶泄漏涡的控制上,因此更适于设计在叶片通道的前半段。梯状间隙结构在叶片通道前半段与后半段都能起到扩稳作用,只是施于叶片前缘时,压气机效率损失较大,而施于叶片尾缘时,可以减小叶片尾迹分离区的面积,对提高压气机效率有益。  相似文献   

8.
楚武利  杨泳  吴艳辉  张夏 《热能动力工程》2006,21(3):255-258,263
采用商业软件Numeca的Fine/Turbo模块,对包含斜流叶轮、蜗壳-体的斜流风机进行整机计算,并在与已有试验数据进行了较好吻合的基础上,对其内部流场进行详细的数值分析,证实斜流叶轮内部也存在离心式叶轮中古典的射流-尾迹结构。研究结果表明:由于蜗壳高度非对称性,使各叶轮内部射流-尾迹结构也完全不同。进一步研究表明,造成这一现象的根本原因在于非对称蜗壳的存在改变了叶轮顶部的叶顶泄漏流动。  相似文献   

9.
对带有叶片前缘混合掠的跨音速离心压气机流场进行了数值模拟研究.结果表明:叶片前缘混合前掠能够有效提高压气机流通能力,拓展失速裕度,推迟压气机失稳,使压气机工作裕度得到明显提升,而叶片前缘混合后掠则减少失速裕度,使压气机工作裕度下降,易发生失稳;叶片前缘混合前掠可以有效减弱叶轮通道内部激波强度,而前缘混合后掠会使通道内激波强度增强,造成一定的激波损失;虽然二者均可以改善通道下游分流叶片两侧低能流团的分布情况,但叶片前缘混合前掠改善作用更好;叶片前缘混合掠对压气机内部二次流的影响主要集中在叶片前缘附近,对叶轮出口附近二次流影响不大.通过对不同前缘混合掠结果对比分析,叶片前缘混合前掠在提高压气机流通能力、工作裕度以及改善内部气流流动情况具有明显的优势.  相似文献   

10.
叶片前缘不同后掠角对离心压气机气动性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用全三维气动设计技术,设计了4种具有掠角叶片和带翼型叶片扩压器的涡轮增压跨音速离心压气机,并采用数值模拟手段研究了叶片前缘不同后掠角对压气机内部工质流动的影响。研究结果表明:主叶片前缘不同后掠角会使压气机堵塞流量(堵塞工况下的工质流量)增加,提高压气机流通能力,同时,可以有效改善通道内低能流团的分布;但由于主叶片轴向弦长缩短,会造成喘振裕度的减少,以及主叶片前缘脱体激波角增大和槽道激波的增强;对截面二次流分析结果表明:叶片前缘的后掠角对二次流的影响主要表现在叶轮进口附近,对出口影响不大。对比不同前缘后掠角压气机内部流动情况发现,掠角越小,叶片叶顶负荷越小,叶片表面压差也越小,流动越稳定;掠角越大,虽然叶轮通道上游产生的激波越强烈,但是可以明显改善通道下游气流流动情况。  相似文献   

11.
采用数值模拟方法研究机匣喷气量大小对涡轮间隙流动控制的影响。结果显示,在10%轴向弦长位位置喷气时,增大喷气量,喷气在间隙内轴向上影响范围增大,对间隙流阻塞作用增加,间隙涡出现位置推迟。同时减小了间隙涡、上通道涡区熵增,尤其是上通道涡区损失大幅减小,并减弱机匣喷气引起的气流偏转不足/过偏现象。叶顶压力面附近由间隙流动引起的低压区减小,并向叶片尾缘移动。但由于喷气量增大使得动叶输出功率下降,使得涡轮效率降低。  相似文献   

12.
Casing treatments(CT) can effectively extend compressors flow ranges with the expense of efficiency penalty. Compressor efficiency is closely linked to loss. Only revealing the mechanisms of loss generation can design a CT with high aerodynamic performance. In the paper, a highly-loaded mixed-flow compressor with tip clearance of 0.4 mm was numerically studied at a rotational speed of 30,000 r/min to reveal the effects of axial slot casing treatment(ASCT) on the loss mechanisms in the compressor. The results showed that both isentropic efficiency and stall margin were improved significantly by the ASCT. The local entropy generation method was used to analyze the loss mechanisms and to quantify the loss distributions in the blade passage. Based on the axial distributions of entropy generation rate, for both the cases with and without ASCT, the peak entropy generation rate increased in the rotor domain and decreased in the stator domain during throttling the compressor. The peak entropy generation in rotor was mainly caused by the tip leakage flow and flow separations near the rotor leading edge for the mixed-flow compressor no matter which casing was applied. The radial distributions of entropy generation rate showed that the reduction of loss in the rotor domain from 0.4 span to the rotor casing was the major reason for the efficiency improved by ASCT. The addition of ASCT exerted two opposite effects on the losses generated in the compressor. On the one hand, the intensity of tip leakage flow was weakened by the suction effect of slots, which alleviated the mixing effect between the tip leakage flow and main flow, and thus reduced the flow losses; On the other hand, the extra losses upstream the rotor leading edge were produced due to the shear effect and to the heat transfer. The aforementioned shear effect was caused by the different velocity magnitudes and directions, and the heat transfer was caused by temperature gradient between the injected flow and the incoming flow. For case with smooth casing(SC), 61.61% of the overall loss arose from tip leakage flow and casing boundary layer. When the ASCT was applied, that decreased to 55.34%. The loss generated by tip leakage flow and casing boundary layer decreased 20.54% relatively by ASCT.  相似文献   

13.
The flow characteristics of the centrifugal fans with different blade outlet angles are basically discussed on steady and unsteady simulations for a rectangular casing fan. The blade outlet angles of the impellers are 35° and 25° respectively. The unsteady flow behavior in the passage of the impeller 35° is quite different from that in the steady flow behavior. The large flow separation occurs in the steady flow field and unsteady flow field of the impeller 35°, the flow distribution in the circumferential direction varies remarkably and the flow separation on the blade occurs only at the back region of the fan; but the steady flow behavior in the impeller 25° is almost consistent with the unsteady flow behavior, the flow distribution of the circumferential direction doesn't vary much and the flow separation on the blade hardly occurs. When the circumferential variation of the flow in the impeller is large, the steady flow simulation is not coincident to the unsteady flow simulation.  相似文献   

14.
<正>It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.  相似文献   

15.
The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry (SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex (TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex, the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.  相似文献   

16.
In order to clarify the unsteady flow fields at low flow-rate region with positive gradient on pressure-flow-rate curve,the experimental investigation was carried out at rotor inlet and outside of rotor blade tip without casing in a semi-opened propeller fan using a hot-wire anemometer.A single I-type hot-wire probe was used,and the data obtained were processed by the use of phase-locked averaging,ensemble averaging and FFT analyzing.The flow fields at rotor inlet and outside of rotor blade tip were discuss...  相似文献   

17.
In recent years, the correlation coefficient of pressure data from the same blade passage in an axial compressor unit has been used to characterize the state of flow in the blade passage. In addition, the correlation coefficient has been successfully used as an indicator for active control action using air injection. In this work, the correlation coefficient approach is extended to incorporate system identification algorithms in order to extract a mathematical model of the dynamics of the flows within a blade passage. The dynamics analyzed in this research focus on the flow streams and pressure along the rotor blades as well as on the unsteady tip leakage flow from the rotor tip gaps. The system identification results are used to construct a root locus plot for different flow coefficients, starting far away from stall to near stall conditions. As the compressor moves closer to stall, the poles of the identified models move towards the imaginary axis of the complex plane, indicating an impending instability. System frequency data is captured using the proposed correlation based system identification approach. Additionally, an oscillatory tip leakage flow is observed at a flow coefficient away from stall and how this oscillation changes as the compressor approaches stall is an interesting result of this research. Comparative research is analyzed to determine why the oscillatory flow behavior occurs at a specific sensor location within the tip region of the rotor blade.  相似文献   

18.
丁骏  杜鑫  姜斌  王松涛 《节能技术》2012,30(6):532-536
本文以某型离心风机为基础,依靠数值模拟的方法,基于对风机内部流场的分析,对其进行优化改型设计。主要分为三个方面:其一,将叶轮的直叶片改型为前掠正弯叶片,控制端区低能流体堆积,抑止叶栅流道分离流动的发生;其二,根据弯掠优化得到的叶轮设计改型风机机壳,以适应弯掠叶轮的出口气动条件;并根据弯掠叶轮与改型机壳内部流动的分析,对叶轮采取根切的优化方法,保持风机全压和流量在合理的大小。得到的优化设计风机,在保持全压和流量基本与原型相等的条件下,效率提高5%以上。  相似文献   

19.
Casing treatment is an effective technique in extending stall margin of axial and centrifugal compressor.However,its impacts on the stall behaviour of mixed-flow compressor are still not completely understood until now.To conquer this issue,unsteady full-annulus simulations were conducted to investigate the stall mechanism of a mixed-flow compressor with and without axial slot casing treatment(ASCT).The circumferential propagating speed of spike inception resolved by the numerical approach is 87.1%of the shaft speed,which is identical to the test data.The numerical results confirmed that the mixed-flow compressor fell into rotating stall via spike-type with and without ASCT.The flow structure of the spike inception was investigated at 50%design rotational speed.Instantaneous static pressure traces extracted upstream of the leading edge had shown a classic spiky wave.Furthermore,it was found that with and without ASCT,the mixed-flow compressor stalled through spike with the characteristic of tip leakage spillage at leading edge and tip leakage backflow from trailing edge,which is different from a fraction of the centrifugal compressor.The resultant phenomenon provides conoborating evidence for that unlike in axial-flow compressor,the addition of ASCT does not change the stall characteristics of the mixed-flow compressor.The flow structure that induced spike inception with ASCT is similar to the case with smooth casing.In the throttling process,tip leakage flow vortex had been involved in the formation of tornado vortices,with one end at the suction side,and the other end at the casing-side.The low-pressure region relevant to the downward spike is caused by leading-edge separation vortex or tornado vortex.The high-pressure region relevant to the upward spike is induced by blockage from the passage vortex.These results not only can provide guidance for the design of casing treatment in mixed-flow compressor,but also can pave the way for the stall waring in the highly-loaded compressors of next-generation aeroengines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号