首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

2.
This work reports the development of high power 4H-SiC bipolar junction transistors (BJTs) by using reduced implantation dose for p+ base contact region and annealing in nitric oxide of base-to-emitter junction passivation oxide for 2 hours at 1150/spl deg/C. The transistor blocks larger than 480 V and conducts 2.1 A (J/sub c/=239 A/cm/sup 2/) at V/sub ce/=3.4 V, corresponding to a specific on-resistance (R/sub sp on/) of 14 m/spl Omega/cm/sup 2/, based on a drift layer design of 12 /spl mu/m doped to 6/spl times/10/sup 15/cm/sup -3/. Current gain /spl beta//spl ges/35 has been achieved for collector current densities ranging from J/sub c/=40 A/cm/sup 2/ to 239 A/cm/sup 2/ (I/sub c/=2.1 A) with a peak current gain of 38 at J/sub c/=114 A/cm/sup 2/.  相似文献   

3.
This letter reports the design and fabrication of 4H-SiC bipolar junction transistors with both high voltage (>1kV) and high dc current gain (/spl beta/=32) at a collector current level of I/sub c/=3.83A (J/sub c/=319 A/cm/sup 2/). An Al-free base ohmic contact has been used which, when compared with BJTs fabricated with Al-based base contact, shows clearly improved blocking voltage. A specific on-resistance of 17 m/spl Omega//spl middot/cm/sup 2/ has been achieved for collector current densities up to 289 A/cm/sup 2/.  相似文献   

4.
In this paper, we discuss the electrical characteristics and reliability of UV transparent Si/sub 3/N/sub 4/ metal-insulator-metal (MIM) capacitors. We examine film thicknesses in the range of 55 to 25 nm with capacitance densities from 1.2 ff//spl mu/m/sup 2/ to 2.8 ff//spl mu/m/sup 2/, respectively, for single MIM capacitors. A new approach for projecting the dielectric reliability of these films extends the limits of maximum operating voltage. Accounting for temperature acceleration and area scaling, the projected lifetimes can be met for a wide range of operating conditions.  相似文献   

5.
Thin In/sub x/Ga/sub 1-x/As tunnel junction diodes having compositions from x=0.53 to 0.75 that span a range of bandgap energies from 0.74 to 0.55 eV, were grown on InP and metamorphic, step-graded In/sub x/Al/sub 1-x/As/InP substrates using molecular beam epitaxy and evaluated in the context of thermophotovoltaic (TPV) applications. Both carbon and beryllium were investigated as acceptor dopants. Metamorphic tunnel diodes with a bandgap of 0.60 eV (x=0.69) using carbon acceptor doping displayed highest peak current densities, in excess of 5900 A/cm/sup 2/ at a peak voltage of 0.31 V, within a 200 /spl Aring/ total thickness tunnel junction. Identically doped lattice-matched tunnel diodes with a bandgap of 0.74 eV exhibited lower peak current densities of approximately 2200 A/cm/sup 2/ at a higher peak voltage of 0.36 V, consistent with the theoretical bandgap dependence expected for ideal tunnel diodes. Specific resistivities of the 0.60 eV bandgap devices were in the mid-10/sup -5/ /spl Omega/-cm/sup 2/ range. Together with their 200 /spl Aring/ total thickness, the electrical results make these tunnel junctions promising for TPV applications where low-resistance, thin metamorphic tunnel junctions are desired.  相似文献   

6.
High-/spl kappa/ NMOSFET structures designed for enhancement mode operation have been fabricated with mobilities exceeding 6000 cm/sup 2//Vs. The NMOSFET structures which have been grown by molecular beam epitaxy on 3-in semi-insulating GaAs substrate comprise a 10 nm strained InGaAs channel layer and a high-/spl kappa/ dielectric layer (/spl kappa//spl cong/20). Electron mobilities of >6000 and 3822 cm/sup 2//Vs have been measured for sheet carrier concentrations n/sub s/ of 2-3/spl times/10/sup 12/ and /spl cong/5.85/spl times/10/sup 12/ cm/sup -2/, respectively. Sheet resistivities as low as 280 /spl Omega//sq. have been obtained.  相似文献   

7.
Low-threshold operation was demonstrated for a 1.34-/spl mu/m vertical-cavity surface-emitting laser (VCSEL) with GaInNAs quantum wells (QWs) grown by metal-organic vapor-phase epitaxy. Optimizing the growth conditions and QW structure of the GaInNAs active layers resulted in edge-emitting lasers that oscillated with low threshold current densities of 0.87 kA/cm/sup 2/ at 1.34 /spl mu/m and 1.1 kA/cm/sup 2/ at 1.38 /spl mu/m, respectively. The VCSEL had a low threshold current of 2.8 mA and a lasing wavelength of 1.342 /spl mu/m at room temperature and operated up to 60/spl deg/C.  相似文献   

8.
A well-controlled low-temperature process, demonstrated from 350/spl deg/C to 500/spl deg/C, has been developed for epitaxially growing elevated contacts and near-ideal diode junctions of Al-doped Si in contact windows to the Si substrate. A physical-vapor-deposited (PVD) amorphous silicon layer is converted to monocrystalline silicon selectively in the contact windows by using a PVD aluminum layer as a transport medium. This is a solid-phase-epitaxy (SPE) process by which the grown Si is Al-doped to at least 10/sup 18/ cm/sup -3/. Contact resistivity below 10/sup -7/ /spl Omega//spl middot/cm/sup 2/ is achieved to both p/sup -/ and p/sup +/ bulk-silicon regions. The elevated contacts have also been employed to fabricate p/sup +/-n diodes and p/sup +/-n-p bipolar transistors, the electrical characterization of which indicates a practically defect-free epitaxy at the interface.  相似文献   

9.
The design, fabrication and characterisation of a high performance 4H-SiC diode of 1789 V-6.6 A with a low differential specific-on resistance (R/sub SP/spl I.bar/ON/) of 6.68 m/spl Omega/ /spl middot/ cm/sup 2/, based on a 10.3 /spl mu/m 4H-SiC blocking layer doped to 6.6/spl times/10/sup 15/ cm/sup -3/, is reported. The corresponding figure-of-merit of V/sub B//sup 2//R/sub SP/spl I.bar/ON/ for this diode is 479 MW/cm/sup 2/, which substantially surpasses previous records for all other MPS diodes.  相似文献   

10.
10-kV, 123-m/spl Omega//spl middot/cm/sup 2/ power DMOSFETs in 4H-SiC are demonstrated. A 42% reduction in R/sub on,sp/, compared to a previously reported value, was achieved by using an 8 /spl times/ 10/sup 14/ cm/sup -3/ doped, 85-/spl mu/m-thick drift epilayer. An effective channel mobility of 22 cm/sup 2//Vs was measured from a test MOSFET. A specific on-resistance of 123 m/spl Omega//spl middot/cm/sup 2/ were measured with a gate bias of 18 V, which corresponds to an E/sub ox/ of 3 MV/cm. A leakage current of 197 /spl mu/A was measured at a drain bias of 10 kV from a 4H-SiC DMOSFET with an active area of 4.24 /spl times/ 10/sup -3/ cm/sup 2/. A switching time of 100 ns was measured in 4.6-kV, 1.3-A switching measurements. This shows that the 4H-SiC power DMOSFETS are ideal for high-voltage, high-speed switching applications.  相似文献   

11.
Vertical scaling of the epitaxial structure has allowed submicron InP/InGaAs-based single heterojunction bipolar transistors (SHBTs) to achieve record high-frequency performance. The 0.25/spl times/16 /spl mu/m/sup 2/ transistors, featuring a 25-nm base and a 100-nm collector, display current gain cut-off frequencies f/sub T/ of 452 GHz. The devices operate at current densities above 1000 kA/cm/sup 2/ and have BV/sub CEO/ breakdowns of 2.1 V. A detailed analysis of device radio frequency (RF) parameters, and delay components with respect to scaling of the collector thickness is presented.  相似文献   

12.
A GaInAsSb-AlGaAsSb large optical cavity triple-quantum-well structure was grown by molecular-beam epitaxy. Shallow mesa ridge-waveguide lasers with stripe width of 100 /spl mu/m were fabricated and tested. An internal losses coefficient as low as 4 cm/sup -1/ and a high internal quantum efficiency of 70% were obtained. In the pulsed regime at room temperature, the extrapolated threshold current densities for infinite cavity length is 78 A/cm/sup 2/. The threshold current density per quantum well is as low as 34 A/cm/sup 2/ for a 3-mm-long cavity.  相似文献   

13.
Low-frequency noise measurements were performed on thin metallic very large-scale integration (VLSI) interconnects of three different geometries. These measurements were carried out under stressing current densities between 1.0/spl times/10/sup 5/ A/cm/sup 2/ and 2.2/spl times/10/sup 6/ A/cm/sup 2/ at different ambient temperatures up to 280/spl deg/C, in order to investigate the dependence of low-frequency noise on the geometrical shape of the VLSI interconnects. The behavior of these samples under these conditions is analyzed in this letter.  相似文献   

14.
Room temperature lasing emission at 1.338 and 1.435 /spl mu/m with threshold current densities of 1518 and 1755 A/cm/sup 2/, respectively, is obtained in broad area GaInNAs-GaAs laser diodes (LDs) grown by molecular beam epitaxy. The 1.338-/spl mu/m LDs show a power output per facet up to 0.20 W/A, a characteristic temperature (T/sub 0/) of 78 K, and an external transparency current density (J/sub tr/) of 0.77 kA/cm/sup 2/. Increasing the lasing wavelength to 1.435 /spl mu/m results in a larger J/sub tr/ of 1.16 kA/cm/sup 2/ and a lower T/sub 0/ of 62 K, due to larger nonradiative recombination. However, the 1.435-/spl mu/m LDs still display a power output per facet up to 0.15 W/A, and a high internal quantum efficiency of 52%. These improved performances are achieved without the need to use strain compensation layers, Sb as a surfactant during the quantum-well growth, or a postgrowth thermal anneal cycle.  相似文献   

15.
It is demonstrated that the voltage coefficients of capacitance (VCC) in high-/spl kappa/ metal-insulator-metal (MIM) capacitors can be actively engineered and voltage linearity can be significantly improved maintaining high capacitance density, by using a stacked insulator structure of high-/spl kappa/ and SiO/sub 2/ dielectrics. A MIM capacitor with capacitance density of 6 fF/spl mu/m/sup 2/ and quadratic VCC of only 14 ppm/V/sup 2/ has been demonstrated together with excellent frequency and temperature dependence (temperature coefficients of capacitance of 54 ppm /spl deg/C) as well as low leakage current of less than 10 nA/cm/sup 2/ up to 4 V at 125 /spl deg/C.  相似文献   

16.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

17.
A high growth temperature step used for the GaAs spacer layer is shown to significantly improve the performance of 1.3 /spl mu/m multilayer InAs/GaAs quantum-dot lasers. Extremely low room-temperature continuous-wave threshold current densities of 32.5 and 17 A/cm/sup 2/ are achieved for a three-layer device with as-cleaved facets and high-reflectivity coated facets, respectively.  相似文献   

18.
We have studied the Ni and Co germano-silicide on Si/sub 0.3/Ge/sub 0.7//Si. The Ni germano-silicide shows a low sheet resistance of 4-6 /spl Omega///spl square/on both P/sup +/N and N/sup +/P junctions, which is much smaller than Co germano-silicide. In addition, small junction leakage currents of 3/spl times/10/sup -8/ A/cm/sup 2/ and 2/spl times/10/sup -7/ A/cm/sup 2/ are obtained for Ni germano-silicide on P/sup +/N and N/sup +/P junctions, respectively. The good germano-silicide integrity is due to the relatively uniform thickness as observed by cross-sectional TEM.  相似文献   

19.
We report a 0.7/spl times/8 /spl mu/m/sup 2/ InAlAs-InGaAs-InP double heterojunction bipolar transistor, fabricated in a molecular-beam epitaxy (MBE) regrown-emitter technology, exhibiting 160 GHz f/sub T/ and 140 GHz f/sub MAX/. These initial results are the first known RF results for a nonselective regrown-emitter heterojunction bipolar transistor, and the fastest ever reported using a regrown base-emitter heterojunction. The maximum current density is J/sub E/=8/spl times/10/sup 5/ A/cm/sup 2/ and the collector breakdown voltage V/sub CEO/ is 6 V for a 1500-/spl Aring/ collector. In this technology, the dimension of base-emitter junction has been scaled to an area as low as 0.3/spl times/4 /spl mu/m/sup 2/ while a larger-area extrinsic emitter maintains lower emitter access resistance. Furthermore, the application of a refractory metal (Ti-W) base contact beneath the extrinsic emitter regrowth achieves a fully self-aligned device topology.  相似文献   

20.
A high-speed and high-sensitivity vertical indium-tin-oxide-InAlAs-InGaAs Schottky barrier photodetector has been designed, fabricated, and characterized. The devices had dark current densities as low as 8.87/spl times/10/sup -5/ A/cm/sup -2/ at an applied bias of 5 V. The responsivity for all the devices tested ranged from 0.55-0.60 A/W at a wavelength of 1.31 /spl mu/m, and 0.563-0.583 A/W at 1.55 /spl mu/m. The 15-/spl mu/m diameter devices exhibited a -3 dB bandwidth of 19 and 25 GHz at a wavelength of 1.55 /spl mu/m and an applied bias of 5 and 10 V, respectively. These are the best values of responsivity and bandwidth for a vertical InGaAs-based Schottky-barrier photodetector reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号