首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
nef genes from two laboratory grown human immunodeficiency virus type 1 (HIV-1) strains and from two proviruses that had not been propagated in vitro were introduced into CD4+ lymphoblastoid CEM cells. The stable expression of all four Nef proteins was associated with an almost complete abrogation of CD4 cell surface localization. The consequences of the presence of Nef on gp160 cleavage, gp120 surface localization, and envelope-induced cytopathic effect were examined in CEM cells in which the HIV-1 env gene was expressed from a vaccinia virus vector. The presence of Nef did not modify the processing of gp160 into its subunits but resulted in a significant decrease of cell surface levels of gp120, associated with a dramatic reduction of the fusion-mediated cell death. Surface levels of mutant envelope glycoproteins unable to bind CD4 were not altered in Nef-expressing cells, suggesting that the phenomenon was CD4 dependent. The intracellular accumulation of fully processed envelope glycoproteins could significantly delay the cytopathic effect associated with envelope surface expression in HIV-infected cells and may be relevant to the selective advantage associated with Nef during the in vivo infectious process.  相似文献   

2.
The Nef protein of primate lentiviruses triggers the accelerated endocytosis of CD4 and of class I major histocompatibility complex (MHC-I), thereby down-modulating the cell surface expression of these receptors. Nef acts as a connector between the CD4 cytoplasmic tail and intracellular sorting pathways both in the Golgi and at the plasma membrane, triggering the de novo formation of CD4-specific clathrin-coated pits (CCP). The downstream partners of Nef in this event are the adapter protein complex (AP) of CCP and possibly a subunit of the vacuolar ATPase. Whether Nef-induced MHC-I down-regulation stems from a similar mechanism is unknown. By comparing human immunodeficiency virus type 1 (HIV-1) Nef mutants for their ability to affect either CD4 or MHC-I expression, both in transient-transfection assays and in the context of HIV-1 infection, it was determined that Nef-induced CD4 and MHC-I down-regulation constitute genetically and functionally separate properties. Mutations affecting only CD4 regulation mapped to residues previously shown to mediate the binding of Nef to this receptor, such as W57 and L58, as well as to an AP-recruiting dileucine motif and to an acidic dipeptide in the C-terminal region of the protein. In contrast, mutation of residues in an alpha-helical region in the proximal portion of Nef and amino acid substitutions in a proline-based SH3 domain-binding motif selectively affected MHC-I down-modulation. Although both the N-terminal alpha-helix and the proline-rich region of Nef have been implicated in recruiting Src family protein kinases, the inhibitor herbimycin A did not block MHC-I down-regulation, suggesting that the latter process is not mediated through an activation of this family of tyrosine kinases.  相似文献   

3.
BACKGROUND: The negative factor (Nef) of human and simian immunodeficiency viruses (HIV-1, HIV-2 and SIV) is required for high levels of viremia and progression to AIDS. Additionally, Nef leads to cellular activation, increased viral infectivity and decreased expression of CD4 on the cell surface. Previously, we and others demonstrated that Nef associates with a cellular serine kinase (NAK) activity. Recently, it was demonstrated that NAK bears structural and functional similarity to p21-activated kinases (PAKs). RESULTS: In this study, we demonstrate that Nef not only binds to but also activates NAK via the small GTPases CDC42 and Rac1. First, the dominant-negative PAK (PAKR), via its GTPase-binding domain, and dominant-negative GTPases (CDC42Hs-N17 and Rac1-N17) block the ability of Nef to associate with and activate NAK. Second, constitutively active small GTPases (CDC42Hs-V12 and Rac1-V12) potentiate the effects of Nef. Third, interactions between Nef and NAK result in several cellular effector functions, such as activation of the serum-response pathway. And finally, PAKR, CDC42Hs-N17 and Rac1-N17 decrease levels of HIV-1 production to those of virus from which the nef gene is deleted. CONCLUSIONS: By activating NAK via small GTPases and their downstream effectors, Nef interacts with regulatory pathways required for cell growth, cytoskeletal rearrangement and endocytosis. Thus, NAK could participate in the budding of new virions, the modification of viral proteins and the increased endocytosis of surface molecules such as CD4. Moreover, blocking the activity of these GTPases could lead to new therapeutic interventions against AIDS.  相似文献   

4.
The Nef protein of primate lentiviruses down-regulates the cell surface expression of CD4 and probably MHC I by connecting these receptors with the endocytic machinery. Here, we reveal that Nef interacts with the mu chains of adaptor complexes, key components of clathrin-coated pits. For human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus (SIV) Nef, this interaction occurs via tyrosine-based motifs reminiscent of endocytosis signals. Mutating these motifs prevents the binding of SIV Nef to the mu chain of plasma membrane adaptor complexes, abrogates its ability to induce CD4 internalization, suppresses the accelerated endocytosis of a chimeric integral membrane protein harboring Nef as its cytoplasmic domain and confers a dominant-negative phenotype to the viral protein. Taken together, these data identify mu adaptins as downstream mediators of the down-modulation of CD4, and possibly MHC I, by Nef.  相似文献   

5.
6.
We studied human immunodeficiency virus type 1 (HIV-1) Nef protein biochemically and histologically. HIV-1 Nef, derived from baculosystem and from cells infected with HIV-1, formed homomeric monomers, dimers, trimers, and further polymers. These oligomers were non-covalently associated. In cells infected with HIV-1, Nef molecules were clustered at the cell surface as well as cytoplasm. Our previous results have indicated that the Nef on the surface of cells infected with HIV-1 is cytotoxic against uninfected CD4+ T cells. Thus, it is very likely that the HIV-1-mediated cytotoxic reaction is due, at least in part, to the clustered localization of oligomeric Nef on the cell surface.  相似文献   

7.
A proviral nef gene mutant of human immunodeficiency virus type 1 (HIV-1) was evaluated for its defective early replication step. Virus stocks were prepared from six CD4-positive and -negative cell lines transfected with wild-type (wt) or the nef mutant clone and inoculated into two target CD4-positive cell lines to monitor the efficiency of viral entry process. The nef mutant virions produced in one cell line exhibited a severe defect in the entry process, although those produced in the other five cell lines were only slightly less efficient than the wt virions at entering into cells. These results have demonstrated that the HIV-1 Nef is critical for efficient viral entry in a producer cell-dependent manner.  相似文献   

8.
The nef gene of primate lentiviruses encodes a myristoylated protein that is important for pathogenicity and the maintenance of high virus loads. A deletion in nef leads to a significant reduction of the pathogenicity of simian immunodeficiency virus (SIV) in macaques. At the cellular and biochemical levels, Nef has been shown to down-regulate CD4 and major histocompatibility complex class I molecules and to interact with cellular protein kinases. The importance of these activities for Nef function remains uncertain. We have prepared vaccinia virus recombinants expressing different alleles of SIV nef. When grown on TK- 143 cells, recombinants constructed with the nef allele from SIVmac1A11 produced typical plaques while recombinants expressing the nef allele from SIVmac239-R1 gave rise to plaques with altered morphology. By using chimeric Nef proteins and site-directed mutagenesis, the amino acid responsible for altered plaque formation was mapped to a leucine at residue 211. In vitro phosphorylation of immunoprecipitates prepared from cells infected with the vaccinia virus recombinants resulted in labeled proteins of 62 and 90 kDa. The recombinants differed in the ability to stimulate phosphorylation, and the leucine at residue 211 was again found to be the determining amino acid. These results might help elucidate the role of nef in the pathogenesis of SIV.  相似文献   

9.
Nef, a approximately 200 residue multifunctional regulatory protein of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), interacts with components of host cell signal transduction and clathrin-dependent protein sorting pathways. The downregulation of surface CD4 molecules and major histocompatibility complex (MHC) class I antigens by Nef is believed to be important in AIDS pathogenesis [1-7]. Nef contains a globular core domain and two disordered segments--a myristylated arm at the amino terminus and a carboxy-terminal loop projecting from the globular core [8,9]. Here, we aimed to determine the sorting signals in HIV-1 Nef that were responsible for its involvement in the clathrin-mediated pathway. We found that a sequence in the carboxy-terminal disordered loop of Nef is essential for downregulation of CD4. This sequence resembles the dileucine motif, one of two well-characterized sorting signals that target membrane proteins to clathrin-coated vesicles. The dileucine-motif-containing segment of Nef bound directly and specifically to the beta-adaptin subunit of the clathrin adaptor complexes AP-1 and AP-2, which are responsible for recruiting sorted proteins into coated pits. Unlike wild-type Nef, a mutant form of Nef that lacked the dileucine motif did not localize to clathrin-coated pits and did not downregulate CD4 expression, although it could downregulate MHC class I surface expression. Thus, the dileucine motif in HIV-1 is required for CD4 downregulation and for interaction with clathrin adaptor complexes.  相似文献   

10.
CD4 is the primary receptor for the human immunodeficiency virus (HIV). Nef is an accessory protein of HIV that decreases the expression of CD4 on the surface of infected cells. In this study, we identified the Nef binding protein 1 (NBP1), which interacts specifically with Nef in vitro and in vivo. Since it shares sequence similarity with the catalytic subunit of the vacuolar ATPase (V-ATPase) and complements the loss of this VMA13 gene in yeast, NBP1 is the human homolog of Vma13p. Direct interactions between Nef and NBP1 were correlated with the ability of Nef to internalize CD4. The expression of the antisense NBP1 abrogated these effects. We conclude that NBP1 helps to connect Nef with the endocytic pathway.  相似文献   

11.
The nef gene of primate immunodeficiency viruses is essential for high-titer virus replication and AIDS pathogenesis in vivo. In tissue culture, Nef is not required for human immunodeficiency virus (HIV) infection but enhances viral infectivity. We and others have shown that Nef is incorporated into HIV-1 particles and cleaved by the viral proteinase. To determine the signal for Nef incorporation and to analyze whether virion-associated Nef is responsible for enhancement of infectivity, we generated a panel of nef mutants and analyzed them for virion incorporation of Nef and for their relative infectivities. We report that N-terminal truncations of Nef abolished its incorporation into HIV particles. Incorporation was reconstituted by targeting the respective proteins to the plasma membrane by using a heterologous signal. Mutational analysis revealed that both myristoylation and an N-terminal cluster of basic amino acids were required for virion incorporation and for plasma membrane targeting of Nef. Grafting the N-terminal anchor domain of Nef onto the green fluorescent protein led to membrane targeting and virion incorporation of the resulting fusion protein. These results indicate that Nef incorporation into HIV-1 particles is mediated by plasma membrane targeting via an N-terminal bipartite signal which is reminiscent of a Src homology region 4. Virion incorporation of Nef correlated with enhanced infectivity of the respective viruses in a single-round replication assay. However, the phenotypes of HIV mutants with reduced Nef incorporation only partly correlated with their ability to replicate in primary lymphocytes, indicating that additional or different mechanisms may be involved in this system.  相似文献   

12.
We comparatively analyzed the replication kinetics of wild-type (wt) and nef mutant human immunodeficiency virus type 1 (HIV-1) in several CD4-positive cell lines, in order to clarify the molecular function of Nef protein. The delayed growth of nef mutant virus was observed at the initial stage of replication in all cell lines examined. This phenomenon was greatly amplified in the absence of vpu gene. In order to determine the infection stage in viral replication cycle which is specifically affected on virus replication rate in the presence of the Nef protein, we first examined the difference between wt and nef mutant viruses in the virus production rate from transfected cells, and found that the both viruses were produced with equal efficiency. This result showed that Nef protein could be dispensable for virion production. Therefore, early infection stages were focused by single-round infection assay, and the nef mutant virus was found to be much less infectious than wt virus. This indicated that the effect of Nef protein was exhibited in the early phase of a virus replication cycle, during viral adsorption to integration. By entry assay using wt and nef mutant virions, it was revealed that the Nef protein was required for efficient viral entry. These data suggest that the Nef protein might play a role in efficient incorporation of the Env protein into the virions, leading to enhanced viral infectivity.  相似文献   

13.
The Nef gene of the human and simian immunodeficiency viruses HIV and SIV has been implicated in pathogenicity; however, the mechanism by which Nef induces disease is still unknown. An impact on signal transduction in cells has been suggested by the interaction of Nef from an HIV-1 strain and tyrosine kinases like HCK and LCK as well as serine/threonine kinases. We have confirmed the binding of HCK to HIV-1 subtype B Nef and demonstrated an equally strong interaction with a subtype E Nef protein but weaker binding to Nef of HIV-2 subtype A (HIV-2D194). No binding, however, was observed to HIV-2 subtype B Nef (HIV-2D205). Instead, this protein bound to a novel cellular protein, Nefin 1, with characteristics of an adaptor protein and strong expression in all human hematopoietic tissues. Nefin 1 binds through an amino-terminal domain, which is related to SH3 domains. For interaction of Nef with Nefin 1, the PxxP motif and the three-dimensional conformation of the molecule appear necessary. In conclusion, this study demonstrates that Nef proteins of divergent strains of HIV-1 and HIV-2 may use different elements of signal transduction pathways for the induction of pathogenicity in vivo.  相似文献   

14.
The human immunodeficiency virus type 1 (HIV-1) employs a number of complex strategies to interfere with the synthesis, stability, and subcellular localization of its specific cellular receptor CD4. To define better the mechanisms of inhibition of CD4 expression, we used a rabbit reticulocyte lysate in vitro system, in which cDNAs derived from HIV-1-infected cells were used to generate mRNA for the Tat, Vpu, and gp160 envelope proteins that were translated together with CD4-encoding mRNA. In the presence of microsomal membranes, we observed that cotranslation of Env mRNA resulted in a dose-dependent inhibition of CD4 translation. This effect was enhanced further when an mRNA-encoding Vpu in addition to Env mRNA was utilized. However, the activity of Vpu was mostly post-translational, since translation of Vpu alone, but not Env, was able to destabilize CD4 molecules presynthesized into microsomes. The Env-mediated inhibitory effect was specifically targeted at CD4 and did not affect the synthesis or stability of the CD8 molecule. Interestingly, mutated CD4 species, with a 20-fold lower affinity for HIV-1 Env than wild-type, were less sensitive to cotranslational inhibition. Our report identifies the envelope as the HIV-1 protein responsible for down-regulation of CD4 translation. We further propose a mechanism whereby direct interactions between gp160 and nascent CD4 molecules can cause interference with and premature termination of CD4 protein elongation.  相似文献   

15.
The human chemokine receptors CCR5 and CXCR4 have emerged as the predominant cofactors, along with CD4, for cellular entry of HIV-1 in vivo whereas the contribution of other chemokine receptors to HIV disease has not been yet determined. CCR5-specific (R5) viruses predominate during primary HIV-1 infection whereas viruses with specificity for CXCR4 (R5/X4 or X4 viruses) often emerge in late stages of HIV disease. The evolution of X4 viruses is associated with a rapid decline in CD4+ T cells, although a causative relationship between viral tropism and CD4+ T cell depletion has not yet been proven. To rigorously test this relationship, we assessed CD4+ T cell depletion in suspensions of human peripheral blood mononuclear cells and in explants of human lymphoid tissue on exposure to paired viruses that are genetically identical (isogenic) except for select envelope determinants specifying reciprocal tropism for CXCR4 or CCR5. In both systems, X4 HIV-1 massively depleted CD4+ lymphocytes whereas matched R5 viruses depleted such cells only mildly despite comparable viral replication kinetics. These findings demonstrate that the coreceptor specificities of HIV-1 are a causal factor in CD4+ T cell depletion ex vivo and strongly support the hypothesis that the evolution of viral envelope leading to usage of CXCR4 in vivo accelerates loss of CD4+ T cells, causing immunodeficiency.  相似文献   

16.
Despite multiple, high-risk sexual exposures, some individuals remain uninfected with human immunodeficiency virus type 1 (HIV-1). CD4+ lymphocytes from these individuals are less susceptible to infection in vitro with some strains of HIV-1, suggesting that the phenotype of the virus may influence its ability to interact with certain CD4+ cells. In the present study, we examined the susceptibility of CD4+ T lymphocytes and macrophages from two exposed uninfected individuals (EU2 and EU3) to infection with a panel of biologically cloned isolates of HIV-1 having either a non-syncytium-inducing (NSI) or a syncytium-inducing (SI) phenotype. Our results indicate that CD4+ T lymphocytes from EU2 and EU3 are resistant to infection with NSI isolates of HIV-1 but are susceptible to infection with primary SI isolates. In addition, we found that macrophages from EU2 and EU3 are resistant to infection with both NSI and SI isolates. The latter finding was confirmed by using several uncloned NSI and SI isolates obtained from patients during acute HIV-1 infection. In further experiments, env clones encoding glycoproteins characteristic of NSI or SI viruses were used in single-cycle infectivity assays to evaluate infection of CD4+ lymphocytes and macrophages from EU2 and EU3. Consistent with our previous results, we found that macrophages from these individuals are resistant to infection with NSI and SI env-pseudotyped viruses, while CD4+ T lymphocytes are resistant to NSI, but not SI, pseudotyped viruses. Overall, our results demonstrate that CD4+ cells from two exposed uninfected individuals resist infection in vitro with primary, macrophage-tropic, NSI isolates of HIV-1, which is the predominant viral phenotype found following HIV-1 transmission. Furthermore, infection with NSI isolates was blocked in both CD4+ T lymphocytes and macrophages from these individuals, suggesting that there may be a common mechanism for resistance in both cell types.  相似文献   

17.
We have developed an in vitro model to study the influence that human immunodeficiency virus type 1 (HIV-1) may have on the ability of T cells to respond to antigenic challenge. We have examined consequences of HIV-1 gene expression on T-cell activation in antigen-dependent T cells that have stably integrated copies of replication-defective proviral HIV-1. Virus production by HIV-infected, antigen-dependent T cells was induced in response to antigenic stimulation and then decreased as infected cells returned to a state of quiescence. Contrary to the predictions of models proposing that Nef alters signal transduction pathways in T lymphocytes and thereby alters cellular activation, Nef expression in antigen-dependent T-cell clones did not influence their proliferative responses to low or intermediate concentrations of antigen and did not affect other measures of T-cell activation, such as induction of interleukin 2 receptor alpha-chain expression and cytokine production. In addition, we found no evidence for alteration of T-cell responsiveness to antigen by the gag, pol, vif, tat, or rev gene of HIV-1.  相似文献   

18.
19.
Patients with human immunodeficiency virus-1 (HIV-1) infection often present with bone marrow (BM) failure that may affect all hematopoietic lineages. It is presently unclear whether this failure reflects a direct viral impairment of the CD34+ hematopoietic progenitor cells or whether the virus affects the BM microenvironment. To study the effects of HIV-1 on the BM microenvironment, we examined the stromal cell monolayers in long-term BM culture (LTBMC), which are the in vitro equivalent of the hematopoietic microenvironment. We assessed the hematopoietic support function (HSF) of human stromal layers by determining the cellular proliferation and colony-forming ability of hematopoietic progenitors from BM cells grown on the stromal layers. We show that the HSF is reduced by in vitro infection of the human stromal cell layer by a monocytotropic isolate of HIV-1 (JR-FL). There is no loss of HSF when the stromal cell layer is resistant to HIV-1 replication, either using murine stromal cell layers that are innately resistant to HIV-1 infection or using human stromal cells genetically modified to express a gene that inhibits HIV-1 replication (an RRE decoy). Decreased HSF was seen using either human or murine hematopoietic cells, if the stromal cells were human cells that were susceptible to HIV-1 infection. These in vitro studies implicate HIV-1 replication in the stroma as the essential component causing decreased hematopoietic cell production in HIV-1 infection.  相似文献   

20.
Human erythrocytes bearing electroinserted full-length CD4 (RBC-CD4) can bind and fuse with a laboratory strain of human immunodeficiency virus type 1 (HIV-1) or with T cells infected by HIV-1. Here we show that RBC-CD4 neutralize primary HIV-1 strains in an assay of cocultivation of peripheral blood mononuclear cells (PBMC) from HIV-1-infected persons with uninfected PBMC. RBC-CD4 inhibited viral p24 core antigen accumulation in these cocultures up to 10,000-fold compared with RBC alone. Viral p24 accumulation was inhibited equally well when measured in culture supernatants or in call extracts. The inhibition was dose-dependent and long-lived. Two types of recombinant CD4 tested in parallel were largely ineffective. The neutralization of primary HIV-1 by RBC-CD4 in vitro was demonstrated in PBMC cultures from 21 of a total of 23 patients tested at two independent sites. RBC-CD4 may offer a route to blocking HIV-1 infection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号