首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
综述了钇(Y)对Mg-Al系合金的组织、室温和高温力学性能、铸造性能以及耐腐蚀性能的影响.添加适量Y不仅可以细化镁舍金的基体组织,生成高熔点强化相Al2Y,还可以改善β相(Mg17Al12)的形态,有利于铗合金室温力学性能的提高,而Y的固溶强化作用和Al2Y颗粒相的弥散强化作用既有利于室温力学性能的提高,又有利于合金高温力学性能的提高.添加适量Y也可以改善Mg-Al系合金的铸造性能和耐腐蚀性能.Y和Ce、Ca和Nd等合金元素的复合加入可有效改善镁合金的力学性能.指出了含钇Mg-Al系合金目前存在的问题,并展望了其发展前景.  相似文献   

2.
采用常规铸造和热形变相结合的工艺制备Mg-6Gd-6Y-1Zn四元镁合金,并对其显微组织和力学性能进行较系统的研究。结果表明:合金的铸态组织主要由α-Mg,Mg24(GdYZn)5和具有18R-LPSO结构的Mg12Y1Zn1相组成。合金热挤压过程中Mg12Y1Zn1相被拉长,呈长条状沿挤压方向排列,而14H-LPSO相则分布于Mg12Y1Zn1相之间。挤压态合金在高温固溶处理后,Mg12Y1Zn1相溶入基体,而基体中的14H-LPSO相增加。挤压态合金经固溶和时效(T6)处理后,显微组织中呈现18R-LPSO,14H-LPSO结构和β′沉淀颗粒共存。对挤压后的合金直接进行时效(T5)处理过程中也发生了β′沉淀,但14H-LPSO相体积分数没有T6态多。合金在T6态的性能最好,强度和塑性达到了良好的匹配。  相似文献   

3.
采用光学显微镜(OM)、X射线衍射仪(XRD)、带能谱分析(EDS)的扫描电子显微镜(SEM)等分析手段研究了元素Ca对Mg-8Zn-3.2Al-0.9Si-0.3Mn合金基体及Mg2Si相的细化效果及其细化机制。结果表明:Ca的加入能够使Mg2Si初生相由粗大的汉字状变为细小、弥散分布的颗粒状,并使合金基体组织显著细化。Ca对Mg2Si相的变质是以CaSi2作为Mg2Si相的异质形核核心和Ca作为表面活性元素影响其生长两种机制共同作用的结果。由于显微组织的改善,使得合金的室温和高温力学性能均得到提高。  相似文献   

4.
热处理条件对锻造ZK60-Y镁合金力学性能的影响   总被引:4,自引:0,他引:4  
研究了不同热处理条件下锻造ZK60-Y镁合金微观组织的变化对其力学性能的影响.结果表明,直接进行人工时效的合金具有优越的强度和塑性.XRD分析表明,析出相主要有Mg2Zn3、Mg24Y5、Zn2Zr3和w-Mg3Y2Zn3.Mg2Zn3和w-Mg3Y2Zn3等析出相的尺寸、数量及其在基体中的分布状态对合金的力学性能影响很大.锻造态下大块破碎呈带状分布的Mg3Y2Zn3相及T4和T6态下粗化呈片层状的Mg2Zn3相是合金力学性能降低的主要原因.细小呈带状分布的Mg3Y2Zn3相和细层片状分布的Mg2Zn3相及其在此状态下细小的晶粒使T5态合金具有优越的抗拉强度和塑性.  相似文献   

5.
马旭  李全安  井晓天 《材料导报》2015,29(20):97-100
采用XRD、OM和SEM方法,通过拉伸试验、断口分析和组织观察,研究了Mg-10Gd-(0,1,2,3,4)Nd-0.5Zr合金的显微组织和25~250℃下的力学性能,结果表明:时效态MN0合金组织由α-Mg基体和Mg5Gd相组成,Mg5Gd相主要分布在晶界处。随着Nd含量的增加,产生了新相Mg12Nd,合金晶粒细化,抗拉强度和伸长率都有显著提高,同时,随着温度的升高,合金的抗拉强度具有反常的温度效应。  相似文献   

6.
综述了Al合金高压凝固研究现状,着重介绍了GPa级高压作用下Mg合金凝固组织细化及细化机制研究结果,高压下Mg合金异质晶核结构及与Mg基体界面关系、异质晶核生成机制、压力对结晶相和形核衬底界面能(润湿性)的影响将成为今后Mg合金凝固组织细化机制研究的关键科学问题之一。介绍了与凝固组织细化相关的高压凝固理论,如非均质形核临界生核半径和临界形核功、形核率及晶体生长速率等理论模型及最新研究进展。  相似文献   

7.
高爱华  王福荣  张建新 《材料导报》2016,30(14):117-119
以Mg-5Sn-1.5Al-1Zn-1Si铸态合金为研究对象,分析了Sb元素对合金组织的影响及其作用机理。结果表明,Sb元素优先与Mg反应生成Mg3Sb2相,适量Sb对合金组织具有较强细化作用,汉字状的Mg2Si得到显著变质;Sb通过Mg2(Si,Sn)中间相的桥梁作用,进一步阻断Mg2Si的枝晶生长,这种阻碍作用打破了Mg2Si共晶相的生长条件,使其汉字状形态得到控制;与其他合金元素相比,Sb的抑制因子较低,加入适量Sb有利于提高合金形核率,增加过冷度,对细化铸态组织具有重要作用。  相似文献   

8.
对Mg-5.0Y-3.0Nd-0.5Zr镁合金进行熔铸和不同温度的均匀化退火。测试该合金的室温拉伸力学性能。并采用金相显微镜,扫描电镜等方法观察铸态和均匀化退火态组织。结果表明,添加稀土元素能使镁合金的铸态组织得到细化,Nd和Y分别以Mg4、Nd3和Mg24Y化合物形式存在,均匀化退火后,试验合金抗拉强度和伸长率得到提高.其中450℃的均匀化退火效果最好,合金的抗拉强度比铸态时的提高了18.6%,塑性提高了3.5%。  相似文献   

9.
Si对AZ91D镁合金显微组织与力学性能的影响   总被引:14,自引:2,他引:14  
利用光学金相显微镜OM和XRD分析了加入微量Si的AZ91D合金显微组织和相组成,测试了合金室温拉伸力学性能和硬度,利用SEM分析了合金拉伸断口形貌.结果表明,加入一定量Si后AZ91D合金组织中形成汉字状Mg2Si相,富集于固液界面前沿,阻碍α-Mg基体的自由长大,从而细化合金铸态组织;汉字状Mg2Si相的存在导致合金力学性能的降低;AZ91D合金室温拉伸断口是以解理断裂为主的脆性断裂,加入Si后,断裂常发生于α-Mg基体和汉字状Mg2Si相间的界面处.  相似文献   

10.
通过制备Mg-6Zn-1.5Y-0.8Zr-xNd(x=0、1、2、3、4)系列合金,研究了稀土元素Nd对Mg-6Zn-1.5Y-0.8Zr合金组织结构和力学性能的影响。通过金相显微镜、扫描电镜、EDS、XRD等手段,观察和分析了合金的微观形貌和组织结构,测量了合金抗拉强度、屈服强度和伸长率等力学性能。结果表明:合金中添加稀土元素Nd后晶粒明显细化,随着Nd元素含量的增加,晶粒细化效果更为明显;通过XRD分析可知,添加Nd元素后,合金中并没有出现新的含Nd的物相;扫描电镜和EDS分析表明,合金中加入的Nd置换了部分Y,形成了Mg3(NdY)2Zn3、Mg3-(NdY)Zn6的相结构,Nd元素对Y的置换主要出现在Mg3(NdY)2Zn3结构中,在Mg3(NdY)Zn6相结构中出现较少;力学性能测试结果表明,随着Nd含量增多,合金晶粒细化,细晶强化作用明显,合金屈服强度逐渐增大,而抗拉强度和伸长率在Nd含量为3%(质量分数)时达到最大,比未添加Nd元素时提高约25%以上。  相似文献   

11.
This study investigated the effect of Sm additions on the microstructure, thermal conductivity, and mechanical properties of Mg-Zn-Zr alloy. The results indicate that the addition of Sm led to the formation of a rare-earth phase at the grain boundaries, and the grain size was significantly refined in the extruded state. The thermal conductivity of Mg alloy increased with the increase in Sm content because of the formation of a rare-earth phase that helps to dissolve the Zn atoms in the α-Mg matrix. Moreover, the as-extruded Mg alloy exhibited a higher thermal conductivity (up to124?W?(m?K)?1) than its as-cast counterparts. The Sm-containing as-extruded Mg alloy showed excellent yield strength of up to 254?MPa, and also a good plastic deformation ability.  相似文献   

12.
杨湘杰  郑彬  付亮华  杨颜 《材料工程》2022,50(7):139-148
采用控制变量法研究单一稀土Y和复合稀土Y,Sm元素对AZ91D镁合金微观组织与力学性能的影响,分析稀土元素对AZ91D合金的细化机理。结果表明:复合添加稀土Y和Sm对AZ91D合金的作用效果明显好于单一添加稀土Y对AZ91D合金的作用效果,添加Y和Sm后,生成了块状相Al2Y相和针状相Al2Sm相,可以作为α-Mg的有效异质形核点。当加入量为0.8%(质量分数,下同)Y+1.0% Sm时,α-Mg晶粒尺寸最为细小,分布最为均匀,其合金的硬度、抗拉强度及伸长率分别为67.42HV,153.37 MPa和3.62%,改善了铸态AZ91D合金的室温力学性能,但是超过这个最佳添加量后,合金的室温力学性能开始下降。  相似文献   

13.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射分析及力学性能测试等研究Zn元素对Mg-Y-Nd-Zr铸态合金显微组织及力学性能的影响。结果表明:随着Zn含量的增加,Mg-Y-Nd-Zr-xZn(x=0.0%,0.5%,1.0%,1.5%,质量分数)合金的晶粒逐渐细化,平均晶粒尺寸由(57±0.8)μm细化至(30±0.3)μm,晶界处共晶相的体积分数也逐渐增加。Mg-Y-Nd-Zr铸态合金中主要存在Mg12Nd相和Mg24Y5相,加入0.5%Zn后,合金中出现Mg12YZn相。随Zn含量的增加,Mg12YZn相的体积分数不断增大,合金的力学性能逐渐提高。当Zn含量为1.0%时,合金具有最优的力学性能,其抗拉强度、屈服强度和伸长率分别为(208±5.9),(159±3.9)MPa和(7.5±0.2)%,较未加Zn的合金分别提高了18,42MPa和1.2%。  相似文献   

14.
Influences of Sn and Y on the microstructure,mechanical properties,and corrosion behavior of as-cast Mg-5Li-3Al-2Zn (LAZ532) alloy were investigated.The addition of Sn and Y refines grains and results in the formation of Mg2Sn and Al2Y phases,thus improving the mechanical properties of alloy by second phase strengthening and grain refinement strengthening.As-cast LAZ532 alloy shows typical filiform corrosion morphology,and the addition of Sn and Y does not change the corrosion mode of alloy.Ascast LAZ532-0.8Sn-1.2Y alloy shows excellent mechanical properties with yield strength of 166.2 MPa,ultimate tensile strength of 228.6 MPa and elongation of 14.8 %,and exhibits the best corrosion resistance with the smallest corrosion current density and the lowest anodic dissolution rate.  相似文献   

15.
《材料科学技术学报》2019,35(7):1368-1377
Effects of samarium (Sm) content (0, 2.0, 3.5, 5.0, 6.5 wt%) on microstructure and mechanical properties of Mg–0.5Zn–0.5 Zr alloy under as-cast and as-extruded states were thoroughly investigated. Results indicate that grains of the as-cast alloys are gradually refined as Sm content increases. The dominant intermetallic phase changes from Mg3Sm to Mg41Sm5 till Sm content exceeds 5.0 wt%. The dynamically precipitated intermetallic phase during hot-extrusion in all Sm-containing alloys is Mg3Sm. The intermetallic particles induced by Sm addition could act as heterogeneous nucleation sites for dynamic recrystallization during hot extrusion. They promoted dynamic recrystallization via the particle stimulated nucleation mechanism, and resulted in weakening the basal texture in the as-extruded alloys. Sm addition can significantly enhance the strength of the as-extruded Mg–0.5Zn–0.5 Zr alloy at room temperature, with the optimal dosage of 3.5 wt%. The optimal yield strength (YS) and ultimate tensile strength (UTS) are 368 MPa and 383 MPa, which were enhanced by approximately 23.1% and 20.8% compared with the Sm-free alloy, respectively. Based on microstructural analysis, the dominant strengthening mechanisms are revealed to be grain boundary strengthening and dispersion strengthening.  相似文献   

16.
Abstract

The effects of minor additions of Ce and Y on the as cast microstructure of Mg–3Sn–2Ca (wt-%) magnesium alloy are investigated and compared. Results indicate that adding minor Ce or Y to Mg–3Sn–2Ca alloy does not cause formation of any new phases in the alloy. The as cast Mg–3Sn–2Ca alloy with addition of 0·5 wt-%Ce or Y is still composed of α-Mg, CaMgSn and Mg2Ca phases. However, after adding 0·5 wt-%Ce or Y to Mg–3Sn–2Ca alloy, not only the formation of CaMgSn phase in the alloy is suppressed but also the CaMgSn phases in the alloy are effectively refined. In addition, adding 0·5 wt-%Ce to Mg–3Sn–2Ca alloy exhibits higher refinement efficiency to the CaMgSn phase in the alloy than adding 0·5 wt-%Y. Further investigations need to be considered in order to understand the difference of minor Ce and Y with regard to the refinement of CaMgSn phase in the Mg–3Sn–2Ca alloy.  相似文献   

17.
High thermal stability and good mechanical properties are crucial for the wider future application of magnesium alloys. One of the most promising directions is the alloying of Mg with rare earth elements as Gd. The fine dispersion of metastable β′ phase (c‐base centred orthorhombic, a = 0.641 nm, b = 2.223 nm, c = 0.521 nm), already known from commercially successful WE alloys (Mg‐Y‐Nd‐Zr), precipitated in all three possible orientation modes during T6 treatment causes very pronounced age hardening in binary Mg‐Gd system and inhibits very effectively the dislocation motion during the creep. The stable β phase (Mg5Gd, f.c.c. structure, a = 2.234 nm) ensures the creep resistance comparable to WE alloys. A high content of Gd (above 10 wt.%) is necessary to attain the required microstructure. The addition of Sc (below 1 wt.%) and Mn (about 1.5 wt.%) suppresses the solubility of Gd in Mg considerably. The complex precipitation process involving the precipitation of very stable Mn2Sc, Mn and Gd containing phase and metastable β′ phase is responsible for superior creep properties of MgGd5Sc0.3Mn1 alloy at elevated temperatures. Even at 300°C the creep resistance is markedly better than for WE43 alloy. The increased Gd and Sc contents in MgGd10Sc0.8Mn1 alloy do not further improve the creep resistance.  相似文献   

18.
No abstract The principle and the methodology of focused alloy development by means of applied thermochemistry are described. The Calphad method is described briefly. As an example, calculations used for applications are shown in the system Mg‐Al‐Sc. In more detail the development of creep resistant alloys in the system Mg‐Mn‐(Sc, Gd, Y, Zr) is discussed. One aim is to produce a sufficiently large quantity of efficient precipitations in the structure in order to improve the mechanical properties with a minimum of expensive alloying addition. The large number of possible combinations of the alloying elements in the system Mg‐Mn‐(Sc, for Gd, Y, Zr) on the one hand and the time and cost of technological experiments on creep stability on the other hand require a preselection of the systems and the alloy compositions. Thermodynamic phase equilibrium and phase amount diagrams were calculated, which give indications on the selection of the promising alloying elements. A priority list of three quaternary systems is produced: Mg‐Mn‐Gd‐Sc, Mg‐Mn‐Sc‐Y and Mg‐Mn‐Y‐Zr. For technical investigations the alloy MgMn1Gd5Sc0.8 (wt.%) is most promising, furthermore the alloys MgMn 1Gd5Sc0.3 and MgMn1Y5Sc0.8 seem promising. Very many other alloys could be eliminated as doubtfull or useless with this method. The entire quaternary Mg‐Mn‐Y‐Zr system was disqualified because of characteristics of the phase diagram, which are harmful for the desired microstructure. This focused alloy development saves time and cost‐intensive technical investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号