首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

2.
Barium titanate precursors with Ba/Ti ratio 2:9 and 1:5 were prepared by first hydrolyzing titanium alkoxide and then mixing the resulting titania sol with a barium alkoxide-methanol solution. After drying, the xerogels of the precursors of barium titanates were sintered at temperatures from 700°C (4 h) to 1200°C (110 h or longer). Characterization of the product was performed using X-ray diffraction and laser Raman spectroscopy. At 700°C, BaTi5O11 was formed from the 1:5 precursor and a two-phase mixture of BaTi2O5 and BaTi5O11 was formed from the 2:9 precursor. After prolonged heating at 1200°C, the latter mixture converted to a single-phase material, Ba2Ti9O20.  相似文献   

3.
BaTi4O9 and Ba2Ti9O20 precursors were prepared via a sol–gel method, using ethylenediaminetetraacetic acid as a chelating agent. The sol–gel precursors were heated at 700°–1200°C in air, and X-ray diffractometry (XRD) was used to determine the phase transformations as a function of temperature. Single-phase BaTi4O9 could not be obtained, even after heating the precursors at 1200°C for 2 h, whereas single-phase Ba2Ti9O20 (as determined via XRD) was obtained at 1200°C for 2 h. Details of the synthesis and characterization of the resultant products have been given.  相似文献   

4.
The heterogeneous phase distribution found in Ba2Ti9O20 ceramic resonators results from a temperature-dependent phase boundary and slow reaction kinetics. When sintered at 1350°C or higher in oxygen the Ba2Ti9O20 phase becomes slightly reduced and barium-rich. Thus a stoichiometric composition forms rutile and "Ba2Ti9O20'phase. On slow cooling the excess barium diffuses to the oxygen-rich surface where it reacts to form an envelope of rutile-free material surrounding a core containing a small amount of rutile.  相似文献   

5.
Barium titanosilicates are possible oxide forms for the immobilization of short-lived fission products in radioactive waste. Ba2TiSi2O8 (fresnoite) and BaTiSiO5 (Ba-titanite) samples were prepared by a solid-state synthesis. The enthalpies of formation of Ba2TiSi2O8 crystal and glass at 25°C and of BaTiSiO5 glass were obtained from drop solution calorimetry in a molten lead borate (2PbO–B2O3) solvent at 701°C. The enthalpy of formation for fresnoite composition samples from constituent oxides was exothermic and became more exothermic with increasing crystallinity. Differential scanning calorimetry revealed that the crystallization rate of the fresnoite glasses increased with increasing devitrification. A modified Product Consistency Test-Procedure B (PCT-B) was used to collect solubility data on the fresnoite and titanate phases. The tests suggest that both glassy and crystalline fresnoite exhibit favorable aqueous stability and should be explored further as radioactive waste forms for long-term storage.  相似文献   

6.
A double–inverse microemulsion (IME) process is used for synthesizing nano-sized Ba2Ti9O20 powders. The crystallization of powders thus obtained and the microwave dielectric properties of the sintered materials were examined. The IME-derived powders are of nano-size (∼21.5 nm) and possess high activity. The BaTi5O11, intermediate phase resulted when the IME-derived powders were calcined at 800°C (4 h) in air. However, high-density Ba2Ti9O20 materials with a pure triclinic phase (Hollandite like) can still be obtained by sintering such a BaTi5O11 dominated powders at 1250°C/4 h. The phase transformation kinetics for the IME-derived powders were markedly enhanced when air was replaced by O2 during the calcinations and sintering processes. Both the calcination and densification temperatures were reduced by around 50°C compared with the process undertaken in air. The microwave dielectric properties of sintered materials increase with the density of the samples, resulting in a large dielectric constant ( K ≅39) and high-quality factor ( Q × f ≅28 000 GHz) for samples possessing a density higher than 95% theoretical density, regardless of the sintering atmosphere. Overfiring dissociates Ba2Ti9O20 materials and results in a poor-quality factor.  相似文献   

7.
High-performance Ba2Ti9O20 ceramics are attracting great attention, but their formation mechanism still is somewhat unclear. The present investigation shows that the formation of Ba2Ti9O20 can be promoted strikingly by the participation of Bi2O3 and Al2O3. The effect of Bi2O3 on the formation of Ba2Ti9O20 is attributed to the fact that migration of the involved reactants is accelerated by liquid which forms from the melting of Bi2O3 above 830°C. This migration, however, is not the only rate-limiting factor. A high potential-energy barrier, resulting from stress that arises along the crystal-structured layers, also heavily restricts the formation of Ba2Ti9O20. The participation of Al2O3, on the other hand, can reduce the height of this potential-energy barrier and effectively improve the kinetics of the formation of Ba2Ti9O20 by causing the formation of BaAI2Ti6O16 crystals; these crystals intergrow with Ba2Ti9O20 crystals and result in decreased stress.  相似文献   

8.
in a recent article of the Journal , Yu et al .1 reported their experimental results on the effect of Al2O3 and Bi2O3 on the formation mechanism of Sn-doped Ba2Ti9O20. They claimed that both Al2O3 and Bi2O3 can dramatically assist the formation of Sn-doped Ba2Ti9O20 but are based on different mechanisms. They concluded that first, Bi2O3 melts above 830°C and accelerates the migration of the involved reactants to form Ba2Ti9O20; second, Al2O3 can reduce the height of the potential energy barrier of the formation of Ba2Ti9O20 due to the intergrowth of BaAl2Ti6O16 phase. They explained their results from a point of view that the formation of Ba2Ti9O20 is controlled by (1) the migration of reactants to the interfaces and (2) the height of the potential-energy barrier of the reaction at the interfaces. However, based on their results, we feel their conclusions are incautious and may be misleading, as will be discussed later.  相似文献   

9.
Hexagonal Ba5Nb4O15 nanorods and microdisks were synthesized by a sol–gel process at temperatures of 700°–900°C. The samples were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and UV–visible absorption spectroscopy. The visible light absorption edges of the Ba5Nb4O15 nanorods and microdisks corresponded to the band gap energies of 3.63 and 3.70 eV, respectively. This shows that the nanorod and microdisk-type structures are promising candidates for application in the miniaturization of microwave components.  相似文献   

10.
Phase relations in the system BaO-TiO2 from 67 to 100 mol% TiO2 were investigated at 1200° to 1450°C in O2. Data were obtained by microstructural, X-ray, and thermal analyses. The existence of the stable compounds Ba6Ti17O40, Ba4Ti13O30, BaTi4O9, and Ba2Ti9O20 was confirmed. The compound BaTi2O5 is unstable and either forms as a reaction intermediate below the solidus or crystallizes from the melt. The compounds Ba6Ti17O40 and Ba4Ti13O30 decompose in peritectic reactions, and BaTiO3 and Ba6Ti17O40 react to form a eutectic. Special conditions are required for the formation of Ba2Ti9O20, which decomposes in a peritectoid reaction at 1420°C. The new phase diagram is presented.  相似文献   

11.
The phase development sequence based on a composition equivalent to Ba2Ti9O20 during heating is found to be in the following order: BaTi5O11 > BaTi4O9 > Ba2Ti9O20. The lowest rate of formation of Ba2Ti9O20 is caused by its high surface energy and interface energy, which result in a low nucleation rate. The existence of BaTi5O11 in calcined powder helps to form Ba2Ti9O20 in sintered compacts. The effect of BaTi5O11 on Ba2Ti9O20 formation can be explained by their similar oxygen packing and by reduced volume change during transformation. The amount of BaTi5O11 formed during heating depends greatly on the compositional homogeneity of powders. The addition of SnO2 aids the formation of Ba2Ti9O20 by reduced strain energy at transformation and reduced surface energy.  相似文献   

12.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

13.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

14.
The effects of solid-solution additives, their concentration, and the thermal processing schedule on the microstructure evolution and microwave properties of Ba2Ti9O20 were studied. The solubility of tin in Ba2Ti9O20 was higher than that of zirconium. Both elements facilitated the formation of phase-pure Ba2Ti9O20 resonators. Ba2Ti9O20 formed most easily with low dopant concentrations (0.82 mol%) (most impressively for ZrO2 substitutions). Extended heat treatment (16 h versus 6 h at a temperature of 1390°C) resulted in volatilization of the grain-boundary liquid phase, which leads to more-porous resonators that have correspondingly lower permittivities. Increasing the dopant concentration resulted in minor increases in the quality factor; doping with zirconium led to slightly higher values (a maximum of 13900 at a frequency of 3 GHz). Increasing the measurement temperature degraded the quality factor (most precipitously for BaTi4O9). The temperature coefficient decreased as the ZrO2 substitution increased but was largely unaffected by the SnO2 concentration. Excess TiO2 in a batch with no other dopants demonstrated degraded microwave properties.  相似文献   

15.
Raman spectra are reported for fresnoite (Ba2Ti(Si,Ge)2O8 glasses, and comparison is made between the Raman spectra of the corresponding crystalline powders and glasses of Ba2TiSi2O8 and Ba2TiGe2O8. The Ba2TiGe2O8 glass spectra show correspondence with the Ba2TiGe2O8 crystalline Raman spectra; the v s(Ge–O–Ge) mode occurs at 518 cm−1 in the glass and at 521 cm−1 in the crystalline material. Five-fold coordinated titanium is the majority species present in the Ba2TiGe2O8 glass as revealed by a strong band at 824 cm−1 in the I glass spectrum. The Ba2TiSi2O8 glass spectra are similar to the Ba2TiSi2O8 crystalline spectrum; the strongest band is found at 836 cm−1 in the I glass spectrum. Through comparison with the previous Raman data of other titania silicate glasses, we conclude that the Ba2TiSi2O8 glass has a structure similar to the crystalline phase.  相似文献   

16.
Thin-film solid-state reactions in the system MgO–Nb2O5 are experimentally investigated. MgO (001) substrates are subjected to Nb-O vapor at different temperatures in high vacuum. Thin films containing the phases Mg4Nb2O9 and MgNb2O6 are formed by a vapor–solid reaction between the Nb-O vapor and the substrate. The crystallographic orientations of these phases are studied by X-ray diffractometry including pole figure analysis. Mg4Nb2O9 grows (11.4)-, (11.6)-, and (11.9)-oriented, whereas MgNb2O6 grows with a preferential (241) orientation. The crystallographic relationships and their origins are discussed.  相似文献   

17.
Microwave measurements of Ba2Ti9O20 show that this ceramic is uniquely suited for dielectric resonators. (Suitable ceramics should have a high dielectric constant K , a low dielectric loss (high Q ), and a low temperature coefficient of resonant frequency, τ.) At 4 GHz, Ba2Ti9O20 resonators have Q >8000, K = 39.8, and τ=2 ppm/°C. Measurements of Q and τ were made on unmetallized ceramic resonator disks positioned in a waveguide; K was measured using a dielectric post resonator technique. From 4 to 10 GHz, Q approaches that for a copper waveguide cavity, whereas the temperature coefficient is typically 8 times lower.  相似文献   

18.
Ba2Ti9O20 crystallizes in the monoclinic system with α= l.4818(5) nm, b = 1.4283(6), and c = 0.7109(2) with β = 98.37°±0.07°. The most likely space group is P 21/ m , Z = 4 with a calculated density 4.58 g/cm3. The powder pattern was indexed. The Ba2Ti9O20 crystals form as stellated groups when melts of BaCl2+ 20 to 50% TiO2 cool from 1275°C.  相似文献   

19.
Polymorphic phase transitions in Ba4Nb2O9 were studied by thermal analyses, high-temperature transmission electron microscopy and X-ray powder diffractometry. Two stable polymorphs were isolated, low-temperature α-modification and high-temperature γ-modification, with the endothermic phase transition at 1176°C. The α→γ transformation is accompanied by the formation of a 120° domain structure, which is a consequence of hexagonal→orthorhombic unit cell reconstruction. Reheating the presintered γ-Ba4Nb2O9 results in the formation of a metastable γ'-modification (formerly known as β-polymorph) in the temperature range between 360° and 585°C, before the γ→α transformation at 800°C. Above ∼490°C Ba4Nb2O9 becomes moderately sensitive to a loss of BaO. In air the surface of Ba4Nb2O9 grains decomposes to nanocrystalline Ba5Nb4O15 and BaO, which instantly reacts with atmospheric CO2 to form BaCO3. Surface reaction delays γ→α transformation up to 866°C in air. In vacuum the loss of BaO is even more enhanced and consequently the formation of minor Ba3Nb2O8 phase is observed above 1150°C.  相似文献   

20.
Pure Ba2Ti9O20 (BT29) was synthesized by a solid-state reaction in one step with various amounts of ZrO2 powder additive. The transformation kinetics of BT29 were investigated by quantitative X-ray diffractometry (XRD). The results show that stoichiometric powder mixtures transform to the BT29 phase by nucleation and growth mechanism between 1200° and 1300°C with 1.0 mol% ZrO2. The activation energy of the transformation was found to be 620±60 kJ/mol, but decreases to 515±30 kJ/mol when doped with 1.0 mol% ZrO2. The addition of ZrO2 possibly changes the phase transformation mechanism of BT29 from diffusion controlled to interface controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号