首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role Cryptosporidium parvum oocyst surface macromolecules play in controlling oocyst adhesion (deposition) kinetics to quartz surfaces has been investigated utilizing a radial stagnation point flow system. Deposition kinetics and corresponding attachment efficiencies of viable oocysts were compared with those after treatment with a digestive enzyme (proteinase K) to cleave these surface macromolecules. Low deposition rates were observed with viable oocysts over the entire range of ionic strengths (KCl) investigated, even at ionic strengths as high as 100 mM where the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability predicts the absence of an electrostatic energy barrier. "Electrosteric" repulsion between the oocyst surface macromolecules and the quartz surface is surmised to cause these low deposition rates and attachment efficiencies. However, after removal of these surface macromolecules by the digestive enzyme, increased attachment efficiencies were observed over the entire range of ionic strengths. This significant increase in the deposition kinetics was seen despite the oocysts having a more negative zeta potential following the removal of the surface macromolecules. After treatment with proteinase K, the oocysts no longer experienced electrosteric repulsive forces, and their deposition kinetics followed the general behavior predicted by DLVO theory.  相似文献   

2.
The deposition kinetics of fullerene (C60) nanoparticles onto bare silica surfaces and surfaces precoated with humic acid and alginate are investigated over a range of monovalent (NaCI) and divalent (CaCl2) salt concentrations using a quartz crystal microbalance. Because simultaneous aggregation of the fullerene nanoparticles occurs, especially at higher electrolyte concentrations, we normalize the observed deposition rates by the corresponding favorable (transport-limited) deposition rates to obtain the attachment efficiencies, alpha. The deposition kinetics of fullerene nanoparticles onto bare silica surfaces are shown to be controlled by electrostatic interactions and van der Waals attraction, consistent with the classical particle deposition behavior where both favorable and unfavorable deposition regimes are observed. The presence of dissolved humic acid and alginate in solution leads to significantly slower deposition kinetics due to steric repulsion. Precoating the silica surfaces with humic acid and alginate exerts similar steric stabilization in the presence of NaCl. In the presence of CaCl2, the deposition kinetics of fullerene nanoparticles onto both humic acid- and alginate-coated surfaces are relatively high, even at relatively low (0.3 mM) calcium concentration. This behavior is attributed to the macromolecules undergoing complex formation with calcium ions, which reduces the charge and steric influences of the adsorbed macromolecular layers.  相似文献   

3.
Spatial distributions of Cryptosporidium parvum oocysts in columns packed with uniform glass-bead collectors were measured over a broad range of physicochemical conditions. Oocyst deposition behavior is shown to deviate from predictions based on classical colloid filtration theory (CFT) in the presence of repulsive (unfavorable) colloidal interactions. Specifically, CFT tends to predict greater removal of oocysts (less transport) than that observed in controlled laboratory experiments. Comparison of oocyst retention with results obtained using polystyrene latex particles of similar size suggests that mechanisms controlling particle deposition are the same in both systems. At a given ionic strength, the deposition of Cryptosporidium oocysts is generally greater than that of the microspheres; however, this discrepancy is partly attributable to large differences in oocyst and microsphere zeta potentials. A dual deposition mode (DDM) model is applied which considers the combined influence of "fast" and "slow" oocyst deposition due to the concurrent existence of favorable and unfavorable oocyst-collector interactions. Model simulations of retained oocyst profiles and suspended oocyst concentration at the column effluent are consistent with experimental data. Because classic CFT does not account for the effect of dual mode deposition (i.e., simultaneous "fast" and "slow" oocyst deposition), these observations have important implications for predictions of oocyst transport in subsurface environments, where repulsive electrostatic interactions predominate. Supporting elution experiments further suggest that specific surface interactions between oocyst wall macromolecules and the glass bead collectors could retard or even completely inhibit oocyst release upon perturbation in solution chemistry.  相似文献   

4.
An extensive set of column experiments was performed with freshly harvested Cryptosporidium parvum oocysts to evaluate the effects of solution chemistry, surface coatings, interactions with other suspended particles, and pore fluid velocity on the fate and transport of this widely occurring waterborne pathogen in sandy porous media. We synthesized our data set with a comprehensive literature survey of similar experiments, to compute attachment (collision) efficiencies (α) used in colloid filtration theory (CFT) using three models for the single collector efficiency (η) across a wide range of experimental conditions. Most prior experiments have observed the transport of surface-treated, sterile C. parvum oocyst in porous media. Our column data confirm for freshly harvested oocysts that the presence of iron coatings on the sand medium and the presence of suspended illite clay drastically enhance oocyst deposition. Increasing ionic strength and decreasing pH also systematically enhance the attachment efficiency. Attachment efficiency decreases only at a very high ionic strength, most likely as a result of steric repulsion and possibly other changes in oocyst surface properties. Attachment efficiencies vary with fluid flow rate but without showing specific trends. We found that the computed attachment efficiency across all reported experiments could be reliably estimated using a regression model based on parameters related to ionic strength and pH. The regression model performed better with the Nelson-Ginn η model and Tufenkji-Elimelech η model than with the Rajagopalan-Tien η model. When CFT is used in environmental assessments, the proposed regression model provides a practical estimator for attachment efficiencies of C. parvum oocyst deposition in porous media for a variety of environmental conditions unfavorable to attachment.  相似文献   

5.
The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.  相似文献   

6.
The deposition and re-entrainment behaviors of carboxylate-modified latex microspheres (0.2-, 0.5-, 1.0-, and 2.0-microm diameter) were examined in an impinging jet system on both glass and quartz substrata under a variety of environmentally relevant fluid velocities (2.12 x 10(-4) to 1.06 x 10(-3) m sec(-1)) in both the absence and the presence of an energy barrier to deposition. In the absence of an energy barrierto deposition, deposition fluxes onto glass and quartz substrata increased with increasing fluid velocity for all four microsphere sizes, in accordance with expectations from theory. In contrast, in the presence of an energy barrier to deposition, deposition efficiencies onto glass and quartz substrata decreased with increasing fluid velocity for all four microsphere sizes. Lack of re-entrainment and observed strong attachment were consistent with the expectation that deposition occurs via the primary energy minima where nanoscale surface heterogeneity locally reduces or eliminates the energy barrier to deposition. Colloid deposition onto an overall opposite-charged surface was simulated using a particle transport model with randomly distributed hetero domains that were like-charged relative to the colloid. Varying the size and number of the hetero domains showed that simulated colloid deposition efficiencies decreased with increasing fluid velocity when the hetero domains were small relative to the colloid. The simulations thereby demonstrate that observed decreases in colloid deposition efficiencies with increasing fluid velocity are consistent with the hypothesis that colloid deposition onto overall like-charged surfaces occurs at nanoscale hetero domains where repulsion is locally reduced or eliminated.  相似文献   

7.
Quantum dots (QDs) are one example of engineered nanoparticles (ENPs) with demonstrated toxic effects. Yet, little is known about the behavior of QDs in the natural environment. This study assessed the transport of two commercial carboxylated QDs (CdTe and CdSe) and carboxylated polystyrene latex (nPL) as a model nanoparticle using saturated laboratory-scale columns. The influence of solution ionic strength (IS) and cation type (K(+) or Ca(2+)) on the transport potential of these ENPs was examined in two granular matrices - quartz sand and loamy sand. The retention of all three particles was generally low in the quartz sand columns within the range of studied IS (0.1-100 mM) for the monovalent salt (KCl). In contrast, the retention of the three ENPs in the quartz sand was significant in the presence of 10 mM Ca(2+). Moreover, ENP attachment efficiencies (α) were enhanced by at least 1 order of magnitude in columns packed with loamy sand (for IS between 0.1-10 mM KCl). Although all three ENPs used here are carboxylated, they differ in the type of surface coating (e.g., choice of polymers or polyelectrolytes). Regardless of the surface coatings, the three ENPs exhibit comparable mobility in the quartz sand. However, the ENPs demonstrate variable transport potential in loamy sand suggesting that differences in the binding affinities of surface-modified ENPs for specific soil constituents can play a key role in the fate of ENPs in soils.  相似文献   

8.
An oscillatory capillary rheometer was used to investigate the effects of NaCl, KCl, and CaCl2 on visco-elastic properties of xanthan and locust bean gum (LBG) blends in dilute solution. Gums were evaluated for intrinsic viscosity and elastic component. Molecular conformation of the xanthan–LBG complex was assessed by the power-law and Huggins equations. Addition of any of the three salts reduced significantly the intrinsic viscosity and elastic component of the gum blends, with a pronounced effect from divalent ions, compared with monovalent ions. The 60% xanthan–40% LBG blend exhibited the strongest attraction between xanthan and LBG. For the three salts, the attraction weakened when 5-mM salt was added and vanished with the addition of 50-mM salt. The strongest attraction between xanthan and LBG molecules was also evidenced by a positive Huggins miscibility coefficient Km, and a positive attraction–repulsion coefficient α. With addition of 50 mM of any of the three salts, the coefficient α became negative, suggesting a strong repulsion between the two gums. The power-law coefficient b increased as salt concentration and LBG fraction increased in the blends for the three salts, suggesting a more flexible xanthan–LBG complex dependent on salt concentrations and LBG.  相似文献   

9.
The deposition behavior of cerium dioxide (CeO(2)) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied in quartz crystal microbalance with dissipation (QCM-D) to examine the effect of these mineral phases on CeO(2) deposition in NaCl solution (1-200 mM). Frequency and dissipation shift followed the order: silica > iron oxide > alumina in 10 mM NaCl at pH 4.0. No significant deposition was observed at pH 6.0 and 8.5 on any of the tested sensors. However, ≥ 94.3% of CeO(2) NPs deposited onto Ottawa sand in columns in 10 mM NaCl at pH 6.0 and 8.5. The inconsistency in the different experimental approaches can be mainly attributed to NP aggregation, surface heterogeneity of Ottawa sand, and flow geometry. In QCM-D experiments, the deposition kinetics was found to be qualitatively consistent with the predictions based on the classical colloidal stability theory. The presence of low levels (1-6 mg/L) of Suwannee River humic acid, fulvic acid, alginate, citric acid, and carboxymethyl cellulose greatly enhanced the stability and mobility of CeO(2) NPs in 1 mM NaCl at pH 6.5. The poor correlation between the transport behavior and electrophoretic mobility of CeO(2) NPs implies that the electrosteric effect of OM was involved.  相似文献   

10.
Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl(2) or 70 mM MgCl(2). Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl(2) solution were lower than in CaCl(2) solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl(2) solution compared to those in MgCl(2) or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus.  相似文献   

11.
Effective removal of Cryptosporidium parvum oocysts by granular filtration requires the knowledge of oocyst transport and deposition mechanisms, which can be obtained based on real time microscopic observation of oocyst transport in porous media. Attachment of oocysts to silica surface in a radial stagnation point flow cell and in a micromodel, which has 2-dimensional (2-D) microscopic pore structures consisting of an array of cylindrical collectors, was studied and compared. Real time transport of oocysts in the micromodel was recorded to determine the attached oocyst distributions in transversal and longitudinal directions. In the micromodel, oocysts attached to the forward portion of clean collectors, where the flow velocity was lowest. After initial attachment, oocysts attached onto already attached oocysts. As a result, the collectors ripened and the region available for flow was reduced. Results of attachment and detachment experiments suggest that surface charge heterogeneity allowed for oocyst attachment. In addition to experiments, Lattice-Boltzmann simulations helped understanding the slightly nonuniform flow field and explained differences in the removal efficiency in the transversal direction. However, the hydrodynamic modeling could not explain differences in attachment in the longitudinal direction.  相似文献   

12.
The thermal properties of sodium form gellan gum solutions with and without sodium chloride, potassium chloride, calcium chloride and magnesium chloride were studied by differential scanning calorimetry (DSC). The DSC cooling or heating curves for 1% gellan gum solutions without salt showed a single exothermic or endothermic peak at ~30°C. DSC cooling curves showed a single exothermic peak, with the setting temperature (Ts) shifting to progressively higher temperatures with increasing concentration of the added NaCl or KCl. At low concentrations of NaCl or KCl, DSC heating curves showed a single endothermic peak; however with more addition of salt the endothermic peak gradually developed a bimodal character and eventually split into more than two distinct peaks. The onset of detectable splitting occurred at a high salt concentration which coincided with that at which elastic gels are formed at even a higher temperature as was observed by viscoelastic measurements. With a sufficient addition of monovalent cations the endothermic curve became again a single peak shifting to higher temperatures. In the presence of divalent cations, although Ts shifted to higher temperatures with increasing concentration of added CaCl2 or MgCl2, the melting temperature (Tm) in heating DSC curves shifted to higher temperatures (up to a certain temperature) and then shifted to lower temperatures with increasing concentration of salt. With increasing concentration of CaCl2 or MgCl2, the exothermic and endothermic enthalpies estimated for a main peak increased up to a certain salt concentration and then decreased; however many other peaks were observed at higher temperatures. The endothermic peaks for gels with excessive divalent cations were too broad to be resolved from the baseline; in contrast the exothermic peaks were much sharper and readily recognized. In comparing thermal properties with rheological properties, gellan gum solutions with excessive divalent cations form firm gels on cooling to below the setting temperature, and then it was difficult to remelt them. This was quite different from the behaviour of thermoreversible gels formed in the presence of monovalent cations. It seems that the mechanism of gel formation in gellan gum with divalent cations is markedly different from that with monovalent cations.  相似文献   

13.
The aggregation kinetics of silver nanoparticles (AgNPs) that were coated with two commonly used capping agents-citrate and polyvinylpyrrolidone (PVP)--were investigated. Time-resolved dynamic light scattering (DLS) was employed to measure the aggregation kinetics of the AgNPs over a range of monovalent and divalent electrolyte concentrations. The aggregation behavior of citrate-coated AgNPs in NaCl was in excellent agreement with the predictions based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and the Hamaker constant of citrate-coated AgNPs in aqueous solutions was derived to be 3.7 × 10(-20) J. Divalent electrolytes were more efficient in destabilizing the citrate-coated AgNPs, as indicated by the considerably lower critical coagulation concentrations (2.1 mM CaCl(2) and 2.7 mM MgCl(2) vs 47.6 mM NaCl). The PVP-coated AgNPs were significantly more stable than citrate-coated AgNPs in both NaCl and CaCl(2), which is likely due to steric repulsion imparted by the large, noncharged polymers. The addition of humic acid resulted in the adsorption of the macromolecules on both citrate- and PVP-coated AgNPs. The adsorption of humic acid induced additional electrosteric repulsion that elevated the stability of both nanoparticles in suspensions containing NaCl or low concentrations of CaCl(2). Conversely, enhanced aggregation occurred for both nanoparticles at high CaCl(2) concentrations due to interparticle bridging by humic acid aggregates.  相似文献   

14.
The adsorption kinetics of supercoiled and linear plasmid DNA onto a natural organic matter (NOM)-coated silica surface are acquired using a quartz crystal microbalance with dissipation monitoring (QCM-D) in the presence of common divalent electrolytes CaCl2 and MgCl2. The adsorption kinetics of both DNA are noticeably higher in the presence of CaCl2 compared to MgCl2. We hypothesize that specific bridging between the DNA phosphate groups and NOM carboxyl functional groups in the presence of Ca2+ cations may lead to more efficient attachmentthan in the presence of Mg2+ cations, which are only likely to allow for charge neutralization. The influence of background Na+ cations on the adsorption kinetics in the presence of CaCl2 is found to be insignificant, while the presence of Na+ leads to slower attachment kinetics in MgCl2. Rinsing the DNA layer adsorbed in the presence of CaCl2 with a solution of low NaCl concentration followed by deionized water does not result in observable detachment, indicating irreversibility of DNA adsorption. Instead, softening of the DNA layer adsorbed in the presence of CaCl2 with background Na+ occurs with the rinses due to the increase in electrostatic repulsion between the phosphate functional groups along the DNA backbone. In the case of the DNA layer adsorbed in the presence of CaCl2 without background Na+, softening of the layer does not occur with the rinses.  相似文献   

15.
The sol–gel transition temperatures of 0.1–1.0% high acyl gellan (HAG) with 0–200 mM NaCl or KCl and 0–20 mM CaCl2 or MgCl2 were determined using rheological measurements. Transition temperatures for monovalent cations, Na+ and K+, in the range of 50–80 °C were not significantly different (p > 0.5). Absence of thermal hysteresis was the salient feature. However, thermal hysteresis (∼4.4 °C) was observed for 0.1% HAG without added salt, but disappeared on increasing HAG and counterion concentrations. Few concentrations of HAG and added monovalent and divalent cations showed thermal hysteresis not higher than 2.5 °C. Transition temperatures for divalent cations were similar to those for monovalent cations although for considerably lower concentrations of Ca2+ or Mg2+. Increasing concentrations of monovalent and divalent counterions give rise to higher transition temperatures but not to higher storage moduli. This was interpreted as a lack of cross-link formation in the three-dimensional network structure of the gels. A single sol–gel transition diagram for monovalent cations is proposed, in which different zones associated with the presence of ordered and disordered conformations serve to identify the conditions in which HAG can exist in aqueous media.  相似文献   

16.
Deposition and re-entrainment of 1.1 microm microspheres were examined in packed glass beads and quartz sand under both favorable and unfavorable conditions for deposition. Experiments were performed at environmentally relevant ionic strengths and flow rates in the absence of solution chemistry and flow perturbations. Numerical simulations of experimental data were performed using kinetic rate coefficients to represent deposition and re-entrainment dynamics. Deposition rate coefficients increased with increasing flow rate under favorable deposition conditions (in the absence of colloid-grain surface electrostatic repulsion), consistent with expected trends from filtration theory. In contrast, under unfavorable deposition conditions (where significant colloid-grain surface electrostatic repulsion exists), the deposition rate coefficients decreased with increasing flow rate, suggesting a mitigating effect of hydrodynamic drag on deposition. Furthermore, the re-entrainment rate was negligible under favorable conditions but was significant under unfavorable conditions and increased with increasing flow rate, demonstrating that hydrodynamic drag drove re-entrainment under unfavorable conditions. The drag torque resulting from hydrodynamic drag was found to be 1 order of magnitude or more lower than the adhesive torque based on pull-off forces from atomic force microscopy measurements. This result indicates that hydrodynamic drag was insufficient to drive re-entrainment of microspheres that were associated with the grain surface via the primary energy minimum and suggests that hydrodynamic drag drove re-entrainment of secondary-minimum-associated microspheres.  相似文献   

17.
Cryptosporidium parvum and C. hominis are protozoan parasites responsible for cryptosporidiosis, an acute gastrointestinal illness that can be life-threatening for immunocompromised persons. Sources and genotypes of Cryptosporidium oocysts were investigated in two agricultural areas within the Wachusett Reservoir watershed, a drinking water source for Boston, Massachusetts. Two brooks (denoted Brook SF and Brook JF, respectively), each downgradient from a dairy farm, were chosen as sample sites. For one year, Brooks SF and JF were sampled monthly; oocysts were detected in 6 (50%) out of 12 samples from Brook JF, and no oocysts were detected in Brook SF. Oocyst genotypes from agricultural surface waters were compared to oocyst genotypes from Genbank, as well as fecal samples of cattle and birds, using phylogenetic analysis of a hypervariable region of the 18S rRNA gene by both neighbor-joining and parsimony methods. Results show extensive heterogeneity among Cryptosporidium spp. 18S rRNA sequences, and also suggest that birds are an oocyst source in this watershed. Principal components analysis showed oocyst presence correlating strongly with seasonal factors, and oocysts in surface waters were only detected in the summer through late fall, co-incident with the presence of migratory birds in this watershed. If birds are confirmed to be an important source of oocysts infectious to humans, the data suggest that protection of raw drinking water supplies in some agricultural areas may depend upon management and control of resident and migratory bird populations.  相似文献   

18.
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.  相似文献   

19.
The influence of bacterial motility on cell transport and deposition was investigated in a well-characterized radial stagnation point flow (RSPF) chamber. Deposition experiments were conducted with nonmotile (PA01 deltafliC deltapilA) and motile (PA01 deltapilA) strains of Pseudomonas aeruginosa, and oppositely (positively) charged modified quartz surfaces. Deposition dynamics ofthe two bacterial strains were determined over a wide range of solution ionic strengths and at two flow velocities. The observed deposition dynamics were modeled using a modified expression of the random sequential adsorption (RSA) blocking function accounting for the impacts of hydrodynamic and electrostatic interactions on cell deposition. Results for the nonmotile bacteria indicated that the changes in blocking rate and surface coverage with ionic strength and flow rate were similar to those expected for nonbiological, "soft" particles, for which the coupling of hydrodynamic interactions and electrostatic repulsion governs the deposition dynamics. In contrast deposition dynamics of the motile bacterial cells reduced blocking rates and enhanced maximum coverages, approaching the jamming limit predicted for "hard" ellipsoids of 0.583. We hypothesized that cell motility allows the upstream swimming of bacteria and subsequent cell deposition on regions which are otherwise inaccessible to nonmotile cell deposition due to the "shadow effect".  相似文献   

20.
The success of any protocol designed to detect parasitic protozoa on produce must begin with an efficient initial wash step. Cryptosporidium parvum and Cyclospora cayetanensis oocysts were seeded onto herbs, lettuces and raspberries, eluted with one of four wash solutions and the recovered number of oocysts determined via fluorescent microscopy. Recovery rates for fluorescein thiosemicarbazide labeled C. parvum oocysts seeded onto spinach and raspberries and washed with de-ionized water were 38.4 ± 10.1% and 34.9 ± 6.2%, respectively. Two alternative wash solutions viz. 1M glycine, pH 5.5 and a detachment solution were tested also using labeled C. parvum seeded spinach and raspberries. No statistically significant difference was noted in the recovery rates. However, a wash solution containing 0.1% Alconox, a laboratory glassware detergent, resulted in a significant improvement in oocyst recovery. 72.6 ± 6.6% C. parvum oocysts were recovered from basil when washed with 0.1% Alconox compared to 47.9 ± 5.8% using detachment solution. Also, C. cayetanensis oocysts were seeded onto lettuces, herbs and raspberries and the recovery using de-ionized water were compared to 0.1% Alconox wash: basil 17.5 ± 5.0% to 76.1 ± 14.0%, lollo rosso lettuce 38.3 ± 5.5% to 72.5 ± 8.1%, Tango leaf lettuce 45.9 ± 5.4% to 71.1 ± 7.8% and spring mix (mesclun) 39.8 ± 0.7% to 80.2 ± 11.3%, respectively. These results suggest that the use of Alconox in a wash solution significantly improves recovery resulting in the detection of these parasitic protozoa on high risk foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号