首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以十六烷基三甲基溴化铵(CTAB)为表面活性剂,采用水热法成功制备了不同掺杂比例的Zn_(1-x)Co_xAl_2O_4(x=0,0.20,0.40和0.60)纳米晶。并对样品的晶体结构、形貌、化学成分、价态和光学性能进行表征。实验结果表明,本方法所制备的不同掺杂浓度的Zn_(1-x)Co_xAl_2O_4纳米颗粒为尖晶石结构,晶化程度良好。根据XRD数据计算了晶胞参数a、晶格间距d_(hkl)、晶粒尺寸D,随着掺杂Co离子浓度的增加,均表现为减小趋势。XPS能谱显示大多数Co离子占据四面体中心位置,但有少量的Co离子占据八面体中心位置。随着掺杂Co离子浓度的增加,紫外吸收光的强度逐渐增加。  相似文献   

2.
CoFe_2O_4纳米颗粒因具有优良的磁学性能是目前应用最广泛的一种纳米颗粒。由于CoFe_2O_4纳米颗粒独特性,其在录音录像、雷达导航以及生物提纯方面都有广泛的应用。  相似文献   

3.
以CTAB为表面活性剂,采用水热法成功制备不同掺杂比例的尖晶石型Zn_(1-x)Co_xFe_2O_4(x=0,0.2,0.4,0.6)纳米颗粒,并利用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线能量色散分析(EDS)、选区电子衍射(SAED)、傅里叶变换红外光谱(FTIR)和振动样品磁强计(VSM)等测试手段对样品的化学成分、形貌、晶体结构、粒度、光学性能和磁学性能进行表征。结果表明:不同掺杂比例的Zn_(1-x)Co_xFe_2O_4纳米颗粒均为结晶良好的立方尖晶石型结构,Co~(2+)以替代Zn~(2+)的形式掺杂进入到ZnFe_2O_4晶格中;随着Co掺杂量的增加,晶粒尺寸呈增大趋势,晶格常数发生膨胀。样品形貌为不规则的椭球形颗粒状,粒度比较均匀。纯ZnFe_2O_4纳米晶在室温下呈现超顺磁性,掺杂样品在室温下都具有明显的铁磁性。  相似文献   

4.
采用一步水热法制备ZnO/ZnAl_2O_4复合光催化剂前驱体。用不同量的磷酸溶液通过浸渍蒸干法对样品进行修饰,并于不同温度下焙烧获得高活性ZnO/ZnAl_2O_4纳米复合光催化剂。采用XRD、SEM、TEM、BET和TG-DTA等技术对所得样品进行表征。在模拟太阳光下,以光催化降解甲基橙和还原CO_2评价样品的光催化活性,并考察磷酸修饰量、样品焙烧温度对光催化活性的影响。结果表明:磷酸修饰可提高样品的高温稳定性、晶化程度及比表面积。当磷酸修饰量为n(Zn):n(P)为100:2.0时,经500℃焙烧后所得样品的光催化活性最佳。当光催化剂用量为0.5 g/L时,在60 min内对25 mg/L甲基橙溶液的脱色率达到98%,较未修饰样品的提高15.3%。对最佳条件下所得样品进行CO_2光催化还原,当催化剂用量为1.0 g/L、反应6 h后,所得还原产物中甲醇的生成量为1.60mmol/g。  相似文献   

5.
PEI包覆磁性Fe_3O_4纳米颗粒的制备及性能研究   总被引:1,自引:0,他引:1  
由于PEI/Fe3O4磁流体具有良好的生物兼容性,因而被广泛应用于生物医药领域。本实验用共沉淀法制备出磁性Fe3O4纳米颗粒,通过一次包覆改性法将PEI(聚乙烯亚胺)包覆在磁性Fe3O4纳米颗粒上。利用X-射线衍射仪(XRD)、透射电子显微镜(TEM)、红外光谱仪(FTIR)、振动样品磁强计(VSM)、热重分析仪(TG)等方法对其进行了表征。结果表明,实验制备出颗粒度为10nm左右的颗粒,PEI较好的吸附在其表面,吸附率为33.6%,颗粒度饱和磁化强度为58.05 emu/g,包覆后有所降低,但较好保持着原有磁性。  相似文献   

6.
采用微乳液法成功合成出以磁性铁氧体(NiFe_2O_4)为内核,以氧化硅(SiO_2)为壳层的纳米颗粒。NiFe_2O_4/SiO_2核壳结构纳米复合材料的形成过程是:将合成出的NiFe_2O_4纳米颗粒均匀分散正硅酸乙酯(TEOS)溶液中,然后对TEOS进行水解并在NiFe_2O_4纳米颗粒表面沉淀,将纳米颗粒分离出并进行后续热处理。通过XRD、IR、SEM、TEM等测试手段对纳米颗粒样品的显微组织结构进行了相应分析和观察。研究发现,纳米颗粒具有NiFe_2O_4/SiO_2核壳结构,其晶粒的平均直径大约为40 nm。采用振动样晶磁强计测试样品磁性能可发现纳米颗粒表现出典型的超顺磁性,其饱和磁化强度为12.97 emu·g~(-1)  相似文献   

7.
以Fe和Co_2O_3为原料,通过微波烧结法制备CoFe_2O_4,并与管式炉烧结样品进行比较。采用SEM和XRD对烧结样品进行分析,测量了烧结样品密度和初始磁导率。结果表明,微波烧结样品微观组织均匀,平均晶粒尺寸较小,均显现尖晶石结构相。与管式炉烧结相比,微波烧结可使样品迅速实现致密化,且样品组织均匀。微波烧结1100℃、保温40 min的样品密度和结晶度均高于管式炉烧结1200℃、保温2 h的样品。  相似文献   

8.
以聚乙二醇为表面活性剂,以氨水为沉淀剂,先采用沉淀法将氧化钇(Y_2O_3)纳米颗粒催化剂原位沉积于Si粉表面,再通过催化Si粉氮化工艺制备Si_3N_4粉体。研究了催化剂Y_2O_3的用量及氮化温度等对Si_3N_4粉体合成的影响。采用X射线衍射、扫描电子显微镜及能谱仪对产物的物相组成及显微结构进行了表征。结果表明:当Y_2O_3纳米颗粒的加入量为1%(质量分数,下同)时,试样于1350℃/2 h催化氮化后产物中残余单质Si含量最小,低于1%;氮化后产物中存在着长度约为几个微米,直径在20~200 nm的晶须状Si_3N_4,其生长机理主要为气相-气相-固相(VVS)机理。  相似文献   

9.
为了提高CLAM钢的力学性能,采用传统熔炼法,对CLAM钢添加Y_2Ti_2O_7纳米颗粒。采用光学显微镜、扫描电镜、透射电镜观察和拉伸、冲击试验等方法,对比研究了轧态和回火态下未添加和添加Y_2Ti_2O_7颗粒的CLAM钢的显微组织和力学性能。结果表明:轧制态CLAM钢的组织为马氏体和残留奥氏体,回火态CLAM钢的组织为板条马氏体。在回火态,与未添加Y_2Ti_2O_7相比,添加0. 5%(质量分数) Y_2Ti_2O_7的CLAM钢的晶粒尺寸减小了46. 2%,抗拉强度由655 MPa提高到了673 MPa,冲击吸收能量由195 J增加到了220 J,硬度由15. 38 HRC升高到了17. 16 HRC。  相似文献   

10.
采用溶胶-凝胶法与静电纺丝技术相结合制备了PVP/[Ni(NO3)2+Fe(NO3)3]复合纳米纤维,在一定温度下进行热处理,得到尖晶石结构的NiFe2O4纳米纤维。利用TG-DTA、XRD、FTIR、SEM、TEM等分析手段对样品的组成及结构进行表征。TG-DTA分析表明,PVP/[Ni(NO3)2+Fe(NO3)3]复合纳米纤维的热处理温度高于450℃以后,质量恒定,总失重率为87.8%。XRD与FTIR分析表明,热处理温度高于600℃时,复合纳米纤维已经完全转变成尖晶石结构的NiFe2O4纳米纤维。SEM分析表明,所制备的PVP/[Ni(NO3)2+Fe(NO3)3]复合纤维直径在250~300nm之间,NiFe2O4纳米纤维直径约100nm,长度大于200μm。对NiFe2O4纳米纤维的形成机理进行了探讨。  相似文献   

11.
以CTAB为表面活性剂,采用水热法成功制备了不同掺杂比例的Zn1-xCoxAl2O4(x=0,0.20,0.40和0.60)纳米晶。并对样品的晶体结构、形貌、化学成分、价态和光学性能进行表征。实验结果表明,本方法所制备的不同掺杂浓度的Zn1-xCoxAl2O4纳米颗粒为尖晶石结构,晶化程度良好。根据XRD数据计算了晶胞参数a、晶格间距dhkl、晶粒尺寸D,随着掺杂Co离子浓度的增加,均表现为减小趋势。XPS能谱显示大多数Co离子占据四面体中心位置,但有少量的Co离子占据八面体中心位置。随着掺杂Co离子浓度的增加,紫外吸收光的强度逐渐增加。  相似文献   

12.
前驱体Mn O_2的性质对产物锰酸锂性能影响显著。采用液相沉淀法制备不同性质birnessite型层状Mn O_2,研究发现,以中性条件制得的Mn O_2为前驱体,最终产物中存在Mn O_2杂相且无表面碳包覆,而以酸性条件制得的Mn O_2为前驱体可以得到碳包覆的纯相尖晶石Li Mn_2O_4。后者在0.2 C的充放电倍率下,首次放电比容量为129.7 m Ah/g,远高于前者的58.5 m Ah/g;在30 C的大倍率下,容量高达117.8 m Ah/g,经1500次循环后容量保持率约为92%。因此,将液相沉淀法条件优化为酸性得到的Li Mn_2O_4产物表现出优异的大倍率性能和循环稳定性,具有市场应用前景。  相似文献   

13.
通过水热法制备了ZnFe_2O_4/BC磁性纳米复合材料,用X射线衍射仪、热重-差热分析仪、振动样品磁强计对样品微观结构和磁性能进行表征,并用亚甲基蓝(MB)对样品的吸附行为进行研究。结果表明,制备的ZnFe_2O_4/BC纳米复合材料具有良好的磁响应,且都表现出明显的铁磁性,利用磁分离技术可以很容易从水中分离。此外,不同比例的ZnFe2O4/BC纳米复合材料对MB的吸附现象不同。随着ZnFe_2O_4掺杂比例的增加,饱和磁化强度(Ms)增大,吸附能力减弱。  相似文献   

14.
为提高二氧化钛涂层的防污性能,采用KH-550硅烷改性锐钛矿型TiO_2颗粒,并充分分散于二氧化钛凝胶涂层中。通过降解亚甲基蓝溶液、细菌贴附试验、藻类贴附试验,分别评价了涂层的光催化性能、抗菌性能及抗藻类附着性能,并利用激光共聚焦显微镜及扫描电子显微镜对藻类在涂层表面的附着情况进行分析。结果表明,添加TiO_2纳米颗粒涂层的防污性能较未添加TiO_2纳米颗粒涂层有较大程度的提高。添加粒径为5~10 nm TiO_2颗粒的二氧化钛涂层对小球藻、三角褐指藻及小新月菱形藻的附着降低率分别达到了92.1%、71.5%和62.1%,相较于纯二氧化钛涂层对3种藻类的附着降低率分别提高了29.7%、68.4%和43.5%。TiO_2颗粒的加入可以有效地提高涂层的光催化性能,光催化使得涂层具有亲水、抗菌及自清洁的性能进而有利于提高涂层的防污性能。  相似文献   

15.
通过共沉淀法制备ZnO/ZnAl2O4纳米异质结光催化剂,利用HRTEM、TEM、XRD、BET、TG-DTA和UV-Vis DRS测试方法对样品进行表征。在模拟太阳光照射下,通过测定甲基橙溶液的光催化降解率和对大肠杆菌的杀灭率来评价样品的光催化活性。研究催化剂的组成、焙烧温度、催化剂的用量和不同光源对样品光催化活性的影响。结果表明,当原料中Zn与Al摩尔比为1:1.5时,在600°C焙烧所得的催化剂具有最佳光催化活性。在模拟太阳光照射下,在50 min内1.0 g/L光催化剂对甲基橙的降解率达98.5%;在60 min内,在相同条件下对大肠杆菌(106 CFU/mL)的杀菌率达到99.8%。  相似文献   

16.
设计了一种简单的水热合成法合成晶型可控的立方结构的α-Fe_2O_3,通过扫描电子显微镜,透射电子显微镜,和X射线衍射对所制备产物的结构和形态特征进行了分析。制备的立方结构的α-Fe_2O_3的尺寸范围在130~150 nm之间。研究结果表明,α-Fe_2O_3纳米材料作为一种有效的光催化剂,在过氧化氢存在的条件下可以用来光催化降解废水中的有机物(如罗丹明B),这为设计和开发高效率可见光催化剂在去除工业废水中有机染料的应用提供了新的探索和基础。  相似文献   

17.
利用金属蒸发真空多弧离子源(MEVVA源)注入机,将Au离子注入到高纯石英玻璃衬底中来制备Au纳米颗粒,Au离子注入的加速电压分别为20、40和60 k V,注入剂量为1×1017ions/cm2,随后将注入样品在普通管式退火炉中700~1000℃退火处理。研究了注入条件和热退火参数对Au纳米颗粒的形成、生长、分布以及光学性能的影响。采用光学吸收谱、扫描电子显微镜和透射电子显微镜对注入样品的光学性能、表面形貌和微观结构进行了测试和表征。实验结果表明,采用该低压离子注入结合热退火工艺的方法,所制备的Au纳米颗粒具有很强的局域表面等离子体共振特性,同时该方法也为制备尺寸和分布可控的Au纳米颗粒提供了一些新的参考途径。  相似文献   

18.
通过湿法球磨制备CoFe2O4-BaTiO3颗粒复合材料,研究材料成分和调制频率与电磁效应的关系。结果表明:电磁效应系数随着调制频率由400Hz增加到1000Hz而增加。由于CoFe2O4的电导率在400-1000Hz范围内对频率敏感,电磁效应的曲线特性而发生改变。在烧结过程中形成第三相Ba2Fe2O5,从而导致电磁效应的下降。  相似文献   

19.
目的在较为温和的条件下制备氧化铁/碳纳米复合材料。方法以纳米Fe3O4粉体为催化剂,水热催化纤维素碳化,并借助扫描电镜、透射电镜、X射线光电子能谱仪和X射线衍射仪对碳化产物进行表征分析。结果获得了粒径约为150 nm的枣核形氧化铁/碳纳米复合材料。结论通过相对温和的水热反应,纤维素被碳化形成了壳核结构的纳米产物,Fe3O4催化剂在反应过程中被氧化并成为壳核结构产物的核心。  相似文献   

20.
采用溶胶-凝胶法制备纳米锌铁氧体,在凝胶形成之前加入超细可膨胀石墨,生成的干凝胶粉末在马弗炉中灼热一段时间,在纳米锌铁氧体生成的同时微膨石墨发生膨胀,由此合成出纳米铁氧体复合材料.应用X射线衍射仪、扫描电镜对产物的晶体结构和微观形貌进行了表征分析,并着重对比研究了不同热处理温度对产物粒度分布的影响.利用小型烟箱试验测出产物在军用红外波段质量消光系数大于0.9 m~2/g;利用矢量网络分析仪测试其在2~18 GHz的电磁参数.结果表明:在纳米铁氧体中添加超细微膨石墨,增加了电磁波的损耗,并在红外波段具有显著的消光特性..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号