首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于人工神经网络(ANN),建立了ZA35合金热处理工艺对阻尼性能影响的人工神经网络模型,预测了固溶时效处理后ZA35合金的阻尼性能。模型输入参数为固溶时间、固溶温度、时效时间和时效温度,输出参数为ZA35合金的内耗值。结果表明:该模型可以预测ZA35合金在不同热处理工艺参数下的阻尼性能,也可以优化热处理工艺参数。预测的最大相对误差为13.54%,拟合率为0.982,最终确定ZA35合金阻尼性能最佳的工艺参数是340℃×5 h固溶+150℃×8 h时效处理。  相似文献   

2.
研究了热处理工艺对喷射沉积原位反应TiC_p/ZA35合金复合材料组织和阻尼性能的影响。结果表明:TiC_p/ZA35合金复合材料晶粒细小,Ti C颗粒呈均匀近球形,多沿晶界分布,未发现聚集。Ti C颗粒和ZA35合金基体界面处的位错密度较高。TiC_p/ZA35合金复合材料的内耗随测试温度上升而增加,随测试频率增加而减小。在测试频率为1 Hz,温度为160℃,内耗达到0.105。经350℃×4 h+150℃×6 h热处理后,阻尼较未热处理增加16.2%。热处理后材料阻尼增加归因于位错内耗和增强相Ti C/ZA35合金基体界面内耗。  相似文献   

3.
采用扫描电镜(SEM)、X射线衍射仪(XRD)、电子探针等研究了固溶处理对半固态挤压SiC_p/2024复合材料的组织和性能的影响。结果表明,SiCp/2024复合材料经过500℃×12h固溶和170℃×16h时效处理后,抗拉强度达到了478MPa,硬度(HV)为150,而在未热处理之前材料硬度(HV)仅为86,抗拉强度也只有350 MPa。  相似文献   

4.
为了探索热处理对喷射成形ZA35-3.5Mn合金电化学腐蚀性能的作用规律,采用组织观察、能谱分析及电位扫描技术对不同固溶和时效时间下合金的电化学行为进行了研究.结果表明:在3.5%NaCl溶液中,与未热处理合金相比,经过385℃/4h固溶处理,富锰相全部回溶到基体,增大合金阳极极化,消除腐蚀微电池作用,腐蚀电流密度减小41.2%;再进行120℃/15 h时效处理,合金的腐蚀电流密度减小30.0%,耐腐蚀性增强.  相似文献   

5.
采用人工神经网络方法,研究了固溶温度、固溶时间、时效温度和时效时间对喷射成形ZA35合金力学性能的影响,建立了喷射成形ZA35合金热处理工艺的人工神经网络模型。模型的输入参数为固溶温度、固溶时间、时效温度和时效时间,输出参数为合金抗拉强度和伸长率。该模型可以预测ZA35合金在不同热处理工艺参数下的力学性能,也可以优化热处理工艺参数。推荐喷射成形ZA35合金热处理工艺参数为370 ℃×4 h固溶处理+150 ℃×7 h时效处理。  相似文献   

6.
研究了热处理条件对锻态2.5%(TiB+TiC)/Ti(体积分数)复合材料显微组织和力学性能的影响。结果表明:固溶时效处理对复合材料的基体组织特征有显著影响,在两相区进行固溶时效处理后,得到等轴和双态组织,随固溶温度的升高,初生α相含量逐渐降低,而β转变组织含量逐渐升高,当固溶温度超过β转变温度时,得到全片层组织。TiB和TiC增强相在热处理过程中较为稳定,形态与分布无明显变化。固溶时效处理后,锻态复合材料的抗拉强度提高而塑性降低,随固溶温度的升高,复合材料的室温抗拉强度和塑性均有明显增加,而650℃下抗拉强度与塑性与室温下表现出相反的规律。复合材料经1050℃/2 h/AC+600℃/6 h/AC处理后综合性能最好,室温抗拉强度为1215.8 MPa,延伸率为3.14%,650℃下抗拉强度为629.9 MPa,延伸率为15.9%。  相似文献   

7.
研究了常规固溶+时效、双时效及固溶+预时效+时效处理对热加工态TB2钛合金显微组织及力学性能的影响。显微组织研究表明:通过增加低温预时效工艺,可以使经热处理后的TB2钛合金中析出的次生α相较经常规固溶+时效处理后的更加均匀、细小。力学性能分析表明:经常规固溶+时效处理后,TB2钛合金的塑性较好,但强度偏低;双时效处理可以提高TB2钛合金的强度,但塑性较差;固溶+预时效+时效处理后,TB2钛合金的强度与塑性匹配良好。进一步热处理工艺研究表明:经780℃×1 h/AC+350℃×6 h/AC+560℃×8 h/AC热处理后,TB2钛合金的强度与塑性达到最优匹配,抗拉强度为1 190 MPa,延伸率为14%。  相似文献   

8.
研究了固溶时效处理对8030铝合金导线组织性能的影响。结果表明,未经热处理的8030铝合金导线由α-Al、Al6Fe、Al13Cu4Fe3、AlMg2Zn相组成。经过480 ℃固溶处理6 h后,AlMg2Zn相完全溶入基体,Al13Cu4Fe3相及Al6Fe相部分溶入基体。再经240 ℃时效处理6 h后,第二相重新析出。经固溶时效处理后,8030铝合金导线的导电率都有所提高,在480 ℃固溶处理6 h,再经240 ℃时效处理6 h后,其导电率最高达56.67%IACS,比未经热处理的合金导电率提高了3.41%。经固溶时效处理后,8030铝合金导线的伸长率显著提高,在480 ℃固溶处理6 h,再经200 ℃时效处理4 h后,伸长率从未经热处理的3.75%提高到31.25%。  相似文献   

9.
铸造Al-7Si-2.5Cu-0.3Mg合金的热处理工艺研究   总被引:1,自引:1,他引:0  
郭永春  段洪波  杨通  丁美良 《热加工工艺》2012,41(12):192-195,198
通过相图计算、示差热(DSC)分析,拉伸试验及显微组织分析,对铸造Al-7Si-2.5Cu-0.3Mg合金的热处理过程进行了研究。结果表明:Al-7Si-2.5Cu-0.3Mg合金在515℃左右和535℃左右发生低熔点共晶组织转变,经500℃×4h固溶后,可使合金中低熔点共晶物完全溶解;该合金热处理可以采用单级固溶和分级固溶热处理工艺,单级固溶热处理工艺为:500℃×10h+175℃×6h,分级固溶热处理工艺为500℃×4h+520℃×8h+175℃×6h。  相似文献   

10.
本文主要对A356铝合金的固溶时效处理工艺参数(固溶处理和时效处理时间)进行了优化,对固溶时效处理后合金的组织以及显微硬度进行了分析,以期获得性能最优异的铝合金。结果表明:A356铝合金在540℃固溶处理2.5 h后的组织更好,能为后续的时效处理提供优异的原始组织。时效处理采用170℃处理3 h后使材料的硬度达到了最高值95.00 HV。所以,确定A356铝合金的最佳热处理工艺为540℃固溶处理×2.5 h+170℃时效处理×3 h。  相似文献   

11.
采用搅拌摩擦加工法制备CNTs/ZL114A复合材料,结合差示扫描量热法(DSC)、金相组织(OM)、扫描电镜(SEM)及力学性能测试,确定了该复合材料的最佳热处理工艺,并研究了CNTs体积分数对该复合材料热处理前后性能及组织的影响。结果表明:复合材料最佳固溶时效处理工艺为530℃×10h+165℃×5h。当CNTs体积分数为6%时,该复合材料热处理前后抗拉强度都达到峰值,未热处理复合材料强度达到230MPa,较ZL114A合金母材提高28%,T6热处理后复合材料强度达到330MPa。  相似文献   

12.
以混合盐法制备的原位自生TiB2P/A356复合材料为研究对象,采用光学显微镜、扫描电镜及力学性能测试分析等,研究时效处理对TiB2P/A356复合材料显微组织与力学性能的影响。结果表明:复合材料的最佳热处理工艺为530℃×6 h固溶处理+130℃×10 h时效处理。此时,复合材料的硬度可达76.67 HRB,与铸态相比提高73.51%;抗拉强度可达335.49 MPa,与铸态相比提高40.42%。  相似文献   

13.
热处理工艺对喷射沉积ZA35合金组织和性能的影响   总被引:1,自引:0,他引:1  
喷射成形方法制备ZA35-3.5Mn合金,采用正交分析法研究了热处理工艺对合金力学性能的影响。结果表明,随着固溶温度的升高和固溶时间的延长,抗拉强度和硬度明显地出现了上升的趋势。随着时效温度的升高,抗拉强度和硬度减小,而伸长率却有大幅度的增加。选取了385℃×5h+120℃×7h的固溶时效处理后,合金的组织更加细小均匀,经X-ray分析合金的组成相,除了含有α-Al和η-Zn外,又析出了Al11Cu5Mn3和CuMnZn的三元化合物,有利于合金力学性能的提高。  相似文献   

14.
研究了DD6单晶高温合金在热处理过程中的显微组织演化规律以及初熔组织的生成机理。通过研究不同固溶时效处理对γ′相形貌、尺寸分布和体积分数的影响且分析了完全热处理后合金的显微硬度和拉伸性能,从而确定了合金最佳的热处理工艺。结果表明,通过差热分析法和金相观察法确定合金的初熔温度在1300~1310 ℃。在1315 ℃固溶处理4 h,枝晶间/枝晶干γ′相尺寸趋于一致,呈立方状均匀排列。在固溶处理过程中,γ/γ′共晶组织熔化生成了不规则初熔组织。在不同的一次时效工艺下,1120 ℃时效4 h空冷后,γ′相立方度更好,尺寸分布更均匀。合金最佳的热处理工艺为1290 ℃×1 h+1300 ℃×2 h+1315 ℃×4 h, AC+1120 ℃×4 h, AC+870 ℃×32 h, AC。合金在完全热处理后,随拉伸温度从室温升高至850 ℃时,强度达到峰值,温度继续升高,强度下降;在760 ℃拉伸时塑性最差,随着拉伸温度从760 ℃升高到950 ℃,塑性提高。  相似文献   

15.
研究了激光选区熔化(SLM)成形Al Si7Mg合金沉积态、不同退火态(250℃/3 h、300℃/3 h、350℃/3 h)及不同固溶/时效态(520℃/3 h/水淬(WQ)+150℃/6 h、535℃/3 h/WQ+150℃/6 h、550℃/3 h/WQ+150℃/6 h)的微观组织和显微硬度。结果表明:沉积态微观组织主要由网状Si相和α-Al基体组成,显微硬度达到(110.52±5.91)HV。随着退火温度的升高,网状微观组织逐渐消失,显微硬度降低,350℃/3 h退火态的显微硬度降低至(74.32±1.35)HV。固溶/时效态网状微观组织消失,颗粒状Si析出相分布在Al基体中。随着固溶温度的升高,微观组织中Si颗粒的尺寸变大,显微硬度增加,550℃/3 h/WQ+150℃/6 h固溶/时效态的显微硬度可达(129.18±3.21)HV。随着退火温度固溶温度的升高,热处理态微观组织比沉积态更加均匀,显微硬度值离散程度降低。  相似文献   

16.
对真空熔炼的Mg-Zn-Y-Zr合金在380℃下进行热挤压,随后取部分挤压棒在400℃下轧制成厚度为3 mm的薄板,再进行不同工艺的固溶时效处理。薄板的最佳热处理工艺为530℃×4 h+200℃×8 h。分别对热处理前后薄板试样的显微组织和力学性能进行分析和测试。结果表明,经过固溶时效处理后薄板的抗拉强度显著提高,达到356 MPa,而伸长率有所下降。  相似文献   

17.
研究了固溶及时效处理对La变质4004铝合金组织及性能的影响。结果表明:随着固溶温度的升高、固溶时间的延长,合金中共晶硅熔断并粒化,500℃固溶6 h时性能达到最佳;随着时效温度的升高、时效时间的延长,合金硬度先升高后降低,时效温度为200℃、时效时间6 h时其硬度达到最高值112 HBW。变质4004铝合金最佳热处理工艺为:500℃×6 h固溶+200℃×6 h时效。  相似文献   

18.
研究1220℃×4h固溶+1150℃×4h时效+870℃×24h时效、1220℃×4h固溶+870℃×24h时效和直接进行1100℃×4h三种热处理制度对一种新型镍基高温合金组织和性能的影响.结果表明,这三种热处理制度都能明显提高合金在1100℃/40 MPa的持久寿命,分别将其由24h提高到65、64和53 h.合金的组织铸态由γ、γ'以及少量的MC碳化物和M382硼化物组成.γ'体积约占58%.合金经过固溶+二级时效的处理,MC碳化物主要以颗粒状分布在晶界.同时γ'分为两种尺寸和形态.经过高温固溶+时效热处理后,发生了MC向M23C6退化的反应,使合金的塑性降低.γ'形状为规则的立方体,且尺寸只有0.4 μm.直接1100℃时效也使合金析出两种尺寸和形态的γ',而且使碳化物变得细小.  相似文献   

19.
研究了固溶处理和时效处理的Mg2B2o5w/AZ91D镁基复合材料组织与显微硬度之间的关系.结果表明:经过415℃固溶处理后,共晶相的分解使复合材料的硬度明显下降.时效处理使得复合材料的硬度逐渐增加并在时效处理200℃×16h后出现时效峰值201HV,然而随着时效时间的进一步增加,显微硬度降低.经固溶处理415℃×24h,基体中β-Mg17Al12相基本溶解,形成过饱和固溶体,接着时效处理8h,β-Mg177Al12相以弥散形式析出,从而使得复合材料的显微硬度提高30%;而固溶处理415℃×24h,接着200℃时效处理24h后,析出相在形貌上由连续细小析出相向非连续粗大析出相过渡,这使得复合材料的显微硬度下降到183HV.  相似文献   

20.
《铸造》2018,(11)
研究了不同热处理工艺对Al-8Zn-2.5Cu-2Mg-0.3Ho合金组织和性能的影响。结果表明,经过470℃×40 min的固溶处理,合金组织中的第二相溶解相对充分,基体的过饱和度增加,合金的抗拉强度达到320 MPa,硬度为HB111.5;经过470℃×40 min固溶处理和不同温度的时效处理,时效处理工艺为150℃×24 h时合金的力学性能最佳,此时,合金的抗拉强度达到357 MPa,硬度达到HB245.1;相较于铸态,经过时效处理后合金的抗拉强度和硬度分别提高了103%和93%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号