首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用EBSD和XRD技术研究了1.3%Si无取向硅钢在不同退火温度条件下的微观组织、宏观织构和微观取向。分析了退火温度对此成分体系无取向硅钢再结晶组织和织构的影响;讨论了退火温度与无取向硅钢成品板磁性能的关系。实验结果表明:无取向硅钢的退火温度对其再结晶组织和成品板铁损值有影响,随着退火温度的上升,再结晶晶粒平均尺寸增大且铁损值下降。γ纤维织构是再结晶织构中的优势组分,高斯{110}100织构强度也较高。退火温度对再结晶织构也有影响,随着退火温度上升,γ织构的含量不断上升,其中{111}121织构强度高于{111}110织构强度;退火温度的上升降低了立方{100}100织构和旋转立方{100}110织构但增加了高斯{110}100织构的强度,高斯织构的强度在870℃时达8.8。高斯取向晶粒主要在{111}121取向晶粒附近出现,旋转立方取向晶粒主要出现{111}110取向晶粒附近。由于{111}面织构强度增加和立方织构、旋转立方织构强度的降低,随着退火温度的上升,无取向硅钢的磁感应强度下降。  相似文献   

2.
测量了W600无取向硅钢(1.35Si-0.25Mn-0.28Al)的静态CCT曲线,根据静态相变点测量了W600的动态CCT曲线。根据动态相变点使用Gleeble3500模拟了实际热轧过程,获得了不同冷速的再结晶组织,使用EBSD技术研究了不同冷却速度下获得的热轧试样的微观织构。使用SEM和EDS观察了W600钢的铸坯以及不同冷速获得试样中的析出物分布情况。实验结果表明:在无取向硅钢的α→γ相变中,冷却速度越低相变温度越高,在动态相变中,当冷却速度为0.75℃/s时,相变开始温度为988℃,相变结束温度为875℃;施加形变也有利于相变温度的提高。热轧模拟实验中,较低的冷却速度有利于获得粗大的再结晶晶粒;随着冷却速度减小,立方织构和γ织构含量上升,旋转立方织构含量下降,其中在冷速为0.25℃/s时,{111}121织构含量达28.5%,{111}100织构含量达32.4%。Al N和Mn S为W600钢中的典型析出物。铸坯中析出Al N析出物和Mn S+Al复合析出物平均尺寸均高于后续热轧模拟试样。热轧模拟实验中,冷速较快时,存在大量细小弥散状的Mn S析出物,Al N存在于Al N+Mn S复合析出物而存在,单独存在的Al N析出较少。当冷速降低时,析出物的总数量减少且尺寸变大,单独存在的Mn S析出物逐渐消失。  相似文献   

3.
选取工业生产1.3%Si无取向硅钢连铸坯柱状晶区域铸锭,垂直于柱状晶的生长方向(100方向)进行热轧,利用金相及EBSD技术研究其热轧过程中柱状晶被破碎后的组织及微观织构,同时研究了其在后续冷轧和退火阶段的织构演变规律,为实际生产中的织构控制提供了参考。实验结果表明:经垂直于柱状晶生长方向热轧后,热轧板不同层次的主要织构类型和含量存在差异;热轧板次表层主要为铜型{110}112织构和高斯{110}001织构,高斯织构含量较高是100生长方向的柱状晶造成的;表面至心部1/2层主要为γ纤维织构和旋转立方{100}110织构,立方{100}001织构和高斯织构{110}001织构也较多;中心层织构主要为较强的旋转立方{100}110织构和γ纤维织构;冷轧织构与热轧织构间有继承性,冷轧板织构主要为较强的旋转立方{100}110织构γ织构,与热轧板心层织构分布相同,上述两类织构的含量都比热轧板中的高。退火织构中{111}121织构占优势;立方{100}001织构和{111}110织构含量较高。  相似文献   

4.
通过对3种不同成分的无取向硅钢退火板进行微观组织观察以及分别使用XRD和EBSD进行宏观织构和微观织构观察,研究了3种典型元素对无取向硅钢组织和再结晶织构的影响。结果表明:无取向硅钢再结晶组织对其磁性能有影响,晶粒尺寸越大,无取向硅钢的磁性能越好,1.35Si-0.25Mn-0.28Al的再结晶平均晶粒尺寸达51.6μm,铁损值达3.577 W/kg。Si和Al元素有利于平均晶粒尺寸的增大,Mn含量的提高有利于减少夹杂物对晶粒长大的限制。无取向硅钢再结晶织构主要由强的γ织构(特别是{111}112织构)和弱的立方织构以及高斯织构等组成。有利织构中,立方{100}001织构和旋转{100}011立方织构含量较高,1.35Si-0.25Mn-0.28Al钢中立方织构含量达8.2%,1.33Si-0.17Mn钢中旋转立方含量达7.8%,有利织构含量越高,磁感应强度值越大,1.35Si-0.25Mn-0.28Al钢的磁感应强度达1.739 T。铜型{112}111织构和黄铜{110}112织构组分含量较低,1.33Si-0.17Mn钢在退火样品中黄铜织构最多,其比例仅为1.4%。无取向硅钢的化学成分对织构组成有影响,Al和Si含量的增加有利于{111}121织构和立方织构组分的增加、不利于{111}110组分和高斯织构增加,在1.35Si-0.25Mn-0.28Al钢中{111}121织构的含量达44.3%而{111}110织构含量为17.2%,高斯织构含量仅为1.2%。Mn的含量一定程度上有利于增加无取向硅钢中旋转立方织构的含量。  相似文献   

5.
高压箔经过多道次冷轧后,形成类型复杂的织构。本试验应用X射线衍射仪测定铝箔织构,定量研究了冷轧高纯铝箔常见初始织构与再结晶织构的关系。结果表明,当初始织构为高含量的S织构{123}<634>、铜织构{112}<111>和约10%的立方织构{100}<001>,较少的旋转立方{001}<110>、黄铜织构{011}<211>时,再结晶退火后立方织构含量最高。由于S织构与立方织构存在40°<111>关系,在退火过程中有利于形成立方织构。  相似文献   

6.
采用热力模拟平面压缩实验和电子背散射衍射(EBSD)组织分析测试方法,研究了新型Al-Zn-Mg-Cu高强铝合金热压缩变形以及退火微观组织和织构。结果表明,在变形温度为350℃,应变速率为0.1 s~(-1)的条件下,合金微观组织演变机理为动态回复和大应变几何动态再结晶,出现旋转立方织构{001}110和黄铜织构{111}110,分别沿着α-取向线和β-取向线分布;退火后旋转立方织构减少,黄铜织构增多,旋转立方织构沿着α-取向线向黄铜织构转变。在变形温度为420℃,应变速率为0.1 s~(-1)的条件下,合金变形组织较均匀,再结晶晶粒分布在变形剧烈的晶界或三角晶界处,出现的织构种类主要有旋转立方织构{110}110、黄铜型{011}211织构;退火过程中发生亚动态再结晶,旋转立方织构强度增强,黄铜型{011}211织构有向高斯织构方向移动的趋势。  相似文献   

7.
采用热力模拟实验和电子背散射衍射(EBSD)等测试方法,研究温度为350、420℃和应变速率为0.1 s-1条件下新型Al-Zn-Mg-Cu超高强铝合金轴对称热压缩变形以及400℃、1 h退火微观组织和织构的演变。结果表明:在350℃条件下进行80%的压缩变形过程中微观组织的演变机理是动态回复和大应变几何动态再结晶;主要织构是沿着α取向线分布的黄铜织构{110}112和少量的Goss{110}001织构;退火过程中发生静态回复和程度较小的静态再结晶,出现旋转立方织构{100}011,黄铜织构Brass{110}112沿着α取向线向Goss织构{110}001转变;420℃进行80%压缩变形的微观晶粒组织较均匀,细小的再结晶晶粒分布在变形剧烈的晶界或三角晶界处,织构类型为旋转立方织构{100}011;退火过程中发生亚动态再结晶和晶粒长大,该过程中旋转立方织构{100}011减弱,并出现黄铜织构{110}112。  相似文献   

8.
以实验室模拟CSP连铸连轧工艺制备的热轧硅钢为基板,通过实验室常化、冷轧和初次再结晶退火实验,采用XRD和EBSD技术对样品从热轧到初次再结晶阶段的织构演变进行了研究。结果表明:GOSS晶粒起源于热轧的次表层,沿着次表层到中心层逐渐降低,热轧板中心层主要为{001}110织构。一次冷轧后,次表层存在强的{001}110和{112}110织构;1/4层存在强的{001}110和{112}110以及较强的{111}112织构;中心层则只存在强的{001}110织构。初次再结晶后,硅钢形成了强点{111}112织构的γ织构,GOSS织构再次出现,且分布在{111}112织构周围。GOSS晶粒周围以35°~55°大角度晶界为主,同时还有很高的Σ3和Σ5重合位置点阵。  相似文献   

9.
试验研究了无取向电工钢50W350在热轧、常化、冷轧和退火过程中的组织及织构演变。结果表明,热轧板组织分层明显,表层是细小的等轴晶,次表层是形变组织与等轴晶的混合组织,芯部是拉长的纤维组织;表层主要为(011)和(112)面织构组分,芯部主要为{001}100立方织构、{001}110旋转立方织构。常化板组织在厚度方向上与热轧板类似,各层平均晶粒尺寸较热轧板均增大,常化板表层主要为{112}110织构,芯部主要为{112}110织构和{001}110旋转立方织构。冷轧板为沿着轧制方向伸长的纤维组织,退火板为再结晶组织,平均晶粒尺寸为100. 84μm,主要为{001}100立方织构。  相似文献   

10.
对W800无取向硅钢热轧、冷轧、冷轧退火各阶段沿厚度方向分布的织构进行分析,结果表明,W800无取向硅钢热轧阶段的主要织构组分为{001}110反高斯织构,其含量由表层到中心逐渐增加,卷取使得W800无取向硅钢热轧板{001}110反高斯织构减弱,而{111}110、{111}112γ纤维织构增强;冷轧阶段的主要织构组分为{001}110、{112}110α纤维织构和{111}110、{111}112γ纤维织构,其中,由表层到中心α纤维织构逐渐增强,γ纤维织构逐渐减弱;退火会导致{001}110反高斯织构减弱,{111}110、{111}112γ纤维织构加强。  相似文献   

11.
使用Thermal-Calc计算了3%Si CGO硅钢的热力学相图,使用DIL805A热膨胀仪测量了实验钢的静态CCT曲线。使用Gleeble 3500进行不同应变速率的热变形实验,并使用OM和EBSD研究了应变速率对两相区变形织构的影响规律。结果表明,在热力学相图中,3%Si的电工钢在1200℃仍处于"奥氏体-铁素体"两相区,在750℃时发生"奥氏体-铁素体"相向"铁素体-珠光体"相转变。根据静态相变点确定3%Si电工钢的热轧是两相区轧制。随应变速率下降,热轧退火晶粒的晶粒尺寸不断变大。应变速率对3%Si CGO两相区变形产生的织构有影响,{111}110织构组分随着应变速率的降低先增加后减少。{100}面织构是较强的织构组分。随应变速率降低,旋转立方{100}011织构含量较稳定但略有下降。立方{100}001取向晶粒在应变速率较高的试样中保持了纤维状分布,在应变速率低的试样中呈现等轴晶状,立方{100}001织构在应变速率较高的试样中含量较高。黄铜型取向晶粒在高应变速率条件下数量极少,在低应变速率条件下数量不多但晶粒尺寸较大。  相似文献   

12.
以CSP流程生产的稀土低碳钢板为试验材料,进行了不同加热速度下退火模拟试验,并结合光学显微镜和X射线衍射仪,分析了加热速度对退火试样织构和再结晶进程的影响。结果表明,加热速度从29℃/h提高到42℃/h再结晶开始温度提高了40℃,当加热速度提高到80℃/h,再结晶开始温度670℃;退火后形成了以{223}110和{111}110为主的再结晶织构,提高加热速度,α取向线上的{001}110和{111}110织构密度增强,{112}110、{223}110和{111}110均降低;γ取向线{111}112和{111}110织构密度以及密度差均降低。  相似文献   

13.
将含Cu高硅钢薄板退火后,以不同方式冷却,通过微观组织观察、织构分析以及磁性能测量,研究了冷却速度对含Cu高硅钢再结晶组织、织构及磁性能的影响。结果表明,冷却速度对再结晶组织几乎没有影响,但冷却速度减慢会提高{100}面织构的含量,降低{110}和{111}面织构的含量;0.4Cu试样的晶粒尺寸略大于0.2Cu试样,不同Cu含量试样织构组分差异不大;冷却速度和Cu含量共同作用下,冷却速度对高硅钢磁性能的影响占主导因素。冷却速度越慢,织构因子越大,磁感越高,{100}面织构含量越高,残余应力越小,并且高硅钢中长程有序度越高,有序相的反相畴尺寸越大,这些因素都有利于降低铁损。  相似文献   

14.
利用X射线衍射技术研究冷拔+中间退火2169N奥氏体不锈钢管材的织构转变,及其对管材扩口性能的影响。结果表明,2169N钢的层错能为27.7M·J/m2,属低层错能级别,变形方式为机械孪生。管材存在{113}121主织构组分、{111}uvw和{110}001次织构组分。{110}001织构为管材冷拔时产生,{110}001和{111}uvw织构为管材中间退火转变而成,{113}121织构为{110}112经111旋转约40°转变生成。管材{113}112主织构组分、{111}uvw和{110}001次织构组分均表现出较高的R值,不利于管材厚度方向塑性变形,影响扩口工艺性能。  相似文献   

15.
热轧变形对TB-13合金组织和织构的影响   总被引:1,自引:0,他引:1  
采用光学显微镜和X射线衍射仪分析TB-13合金在不同热轧变形条件下组织和织构的演变规律。结果表明:TB-13合金在变形量小于50%的热轧过程中只发生动态回复,当变形量增加到59%时,该合金发生动态再结晶,且随着变形量的增加,动态再结晶程度逐渐增大,细小的再结晶亚晶粒逐渐取代原始等轴状β晶粒从而使组织细化,动态再结晶是该合金热轧过程中主要的细化机制。同时,热轧变形使得该合金形成以旋转立方取向{001}110织构和Goss取向{110}001织构为主的多种织构,且随着变形量的增大,晶粒取向由Goss取向向旋转立方取向转移。  相似文献   

16.
应用场发射扫描电子显微镜对汽车用电镀锌钢板表面线缺陷形貌特征进行了测试分析。结果表明,镀锌板正常部位与缺陷部位表面差别很大,去除锌镀层后对应部位的显微织构也有明显的不同,基板{111}面织构比例越高,镀锌板表面缺陷越低,而高斯织构{110}001、立方织构{100}001或旋转立方织构{100}011等非{111}织构比例增加时,缺陷出现的几率增大。  相似文献   

17.
利用EBSD技术对CGO硅钢热轧、中间退火、脱碳退火及二次再结晶退火组织及织构进行分析,研究了CGO硅钢各阶段加工制备过程中高斯{110}001晶粒的形状、尺寸及分布特点,分析了高斯取向晶粒在各工序过程中的遗传继承性特点。结果表明,CGO硅钢热轧板的次表层存在Goss取向晶粒,历经一次冷轧及中间退火后Goss取向晶粒基本消失,一次再结晶之后Goss织构仍不是主要织构,主要织构为{111}110和{111}112,说明Goss取向晶粒在二次再结晶退火前数量及尺寸上并不占优势,二次再结晶过程中Goss取向晶粒异常长大形成锋锐Goss织构。{111}110和{111}112织构组分的强度在一次冷轧中不断增加,{111}112织构组分的强度在二次冷轧后达到最大而{111}110织构组分是在初次再结晶后变强。  相似文献   

18.
喻春明  张继明  党波  张毅 《金属热处理》2021,46(12):204-208
采用电子背散射衍射(EBSD)对不同轧制和热处理态的高磁感取向硅钢的重合位置点阵(CSL)晶界和织构进行了研究。结果表明,热轧态取向硅钢截面织构呈层状分布,表层主要为{110}<001>Goss织构,1/4厚度主要为{001}<110>立方织构、{112}<111>铜型织构和{110}<001>Goss织构,而心部则形成较强的{112}<111>铜型织构、{111}<110>形变织构和{110}<001>Goss织构;常化处理后截面织构梯度变化不明显,但中心位置{112}<111>织构向{110}<001>Goss织构转变。冷轧退火态主要织构为{110}<001>Goss织构、{112}<111>织构和{111}<110>形变织构。二次再结晶后,则生成强烈的{110}<001>Goss织构。随着织构的变化,CSL晶界也发生了明显的转变。热轧态CSL重位晶界中∑3~∑29均有出现,但比例较低;常化处理后CSL重位晶界比例增加,冷轧退火后CSL晶界比例大幅提高,特别是∑3、∑7、∑9和∑15等晶界;二次再结晶后,由于CSL晶界发生了转化,CSL晶界类型减少,∑3、∑13等晶界比例增加,∑9晶界消失。  相似文献   

19.
采用X-ray衍射和光学显微镜对AA3104铝合金热粗轧板沿厚向的织构和组织进行研究。结果表明:热粗轧板中存在明显的组织和织构梯度现象;在表层及次表层,剪切织构占主导地位,表现为较强的旋转立方织构R-cube{001}110和{112}110织构,显微组织以再结晶组织为主;在中心层及过渡层,则以典型的形变织构(即Cu{112}111、S{123}634和Bs{011}211)及热变形流线组织为主;这种沿厚度方向的组织和织构梯度对热变形后再结晶织构也有很大影响,热粗轧板中原始的剪切织构有助于退火后立方织构的形成,而原始中心层的形变织构会促使热变形退火后产生{111}110剪切织构和P织构。  相似文献   

20.
采用电子背散射衍射技术(EBSD)对Fe-Cr-Al合金在退火过程中的组织演变规律进行了研究,分析了退火时间对晶界分布、微观织构和性能的影响。结果表明:退火初期合金组织发生回复过程,晶界以小角晶界为主,织构为典型的立方晶体形变织构{001}<110>;退火时间在3~15 min内,组织发生再结晶,大角晶界急剧增加,织构转变为{111}<121>和{111}<112>;退火时间超过15 min后,合金的{111}织构组分减弱,而{001}织构组分增强。随着退火时间的延长,断后伸长率和塑性应变比(r值)先增大后减小,退火时间在15 min时断后伸长率和r值都达到最大值,分别为19.6%和1.23。r值与{111}/{001}织构强度的比值有很好的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号