首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s^-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

2.
利用Gleeble-1500D热模拟试验机对Cu-1.0%Zr-0.15%Y合金进行等温热压缩实验。分析了合金变形温度为550~900℃,应变速率为0.001~10 s~(-1)条件下的真应力-真应变特征、热压缩过程中的组织演变和热变形机制。结果表明:在550~750℃时具有典型的动态回复特征,在850~900℃时具有动态再结晶热变形特征。变形温度和应变速率对Cu-1.0%Zr-0.15%Y合金有显著影响。在真应力-真应变曲线的基础上,建立等温压缩变形过程中的流变应力与应变速率和变形温度之间的本构方程,得到合金的热变形激活能Q为379.16 kJ/mol,与纯铜相比,高Zr含量Cu-1.0%Zr-0.15%Y合金热变形激活能提高了81%。添加稀土元素Y,可以细化Cu-Zr合金晶粒,促进动态结晶。  相似文献   

3.
利用Gleeble-1500D型热模拟试验机对Cu-0.4Zr-0.15Y合金进行高温单次轴向热压缩试验,研究该合金在应变速率范围为0.001~10 s~(-1),热变形温度为550~900℃条件下的热变形行为。通过真应力-真应变数据得出材料的加工硬化率θ,结合lnθ-ε曲线和-(lnθ)/ε-ε曲线特征,研究Cu-0.4Zr-0.15Y合金热变形过程的再结晶临界条件。结果表明:Cu-0.4Zr-0.15Y合金应力-应变具有动态再结晶特征;该合金的lnθ-ε曲线拐点处对应于-(lnθ)/ε-ε曲线的最小值,最小值所对应的应变是临界应变ε_c;临界应变ε_c的变化与应变速率和变形温度有关,临界应变ε_c与Zener-Hollomon参数Z之间的函数关系为ε_c=6.4×10~(-3)Z~(0.07768),且临界应变ε_c与峰值应变ε_p之间满足ε_c/ε_p=0.448。同时,Cu-0.4Zr-0.15Y合金发生动态再结晶组织演变与变形温度和应变速率有关。  相似文献   

4.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Zr合金在应变速率为0.001~10 s~(-1)、变形温度为550~900℃、最大变形程度为55%条件下的流变应力行为进行探讨。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并对其在热压缩过程中的组织演变进行观察。结果表明:热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。结合流变应力、应变速率和变形温度的相关性,计算得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和本构方程。合金动态再结晶的显微组织强烈受到应变速率的影响。  相似文献   

5.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

6.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.4Cr合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究。结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大;在应变温度为700,800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征;从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程;合金动态再结晶的显微组织强烈受到变形温度的影响。  相似文献   

7.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si合金在变形温度为600~800℃、应变速率为0.01~5.00 s-1条件下,分析了合金在高温变形时的流变应力与应变速率及变形温度之间的关系,在热压缩过程中组织的变化.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶,应变速率越小,合金也越容易发生动态再结晶;在同一应变速率下合金动态再结晶的显微组织受到变形温度的影响;利用Arrhenius双曲正弦函数求得Cu-Ni-Si合金热变形激活能为245.4 kJ·mol-1.  相似文献   

8.
采用熔铸、轧制的方法制备Zn-1.0Cu-0.2Ti合金,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)观察合金的显微组织,测定不同退火制度后合金的硬度和再结晶晶粒尺寸,建立了Zn-1.0Cu-0.2Ti合金的再结晶晶粒长大模型,研究退火温度和退火时间对Zn-1.0Cu-0.2Ti合金再结晶行为的影响。利用硬度法测得Zn-1.0Cu-0.2Ti合金的再结晶温度在230℃左右。结果表明:随着退火温度的升高和退火时间的延长,合金再结晶晶粒均逐渐长大,但晶粒长大的速度趋于缓慢,合金中弥散分布于基体内的CuZn4和TiZn15相能够抑制再结晶晶粒的长大。  相似文献   

9.
采用光学显微镜、硬度和电导率测试等方法研究了不同变形量Cu-0.1Ag铜银合金不同温度退火下的组织性能变化规律及再结晶特征。结果表明:随变形量增加,再结晶后晶粒更加细小;硬度在回复阶段几乎不变或略有上升,在再结晶阶段直线下降,再结晶完成后硬度趋于定值。退火温度越高,硬度下降较快,再结晶速率较快。电导率在回复与再结晶过程中显著上升,再结晶完成后电导率趋于定值。室温拉拔变形量26%及50%Cu-0.1Ag合金的再结晶激活能分别为82 k J/mol及69.6 k J/mol,在400~500℃范围内完成再结晶所需时间与温度函数关系分别为lnt=8.2×104/RT-7.56和lnt=6.96×104/RT-6.04。  相似文献   

10.
Cu-0.3Cr-0.15Zr-0.05Mg合金形变时效强化与再结晶   总被引:6,自引:1,他引:6  
对Cu-0.3Cr-0.15Zr-0.05Mg合金形变时效强化和再结晶过程进行了考察和研究。析出相对位错的钉扎作用强烈阻碍合金再结晶的形核和长大,使合金产生明显的时效硬化。60%冷变形450℃~500℃时效1h~2h,硬度和导电率分别可达162HV和73%IACS左右。大变形量降低了合金再结晶激活能(Qr),加速再结晶过程,以致于在较高温度下时效,出现了再结晶形核和长大的现象,再结晶产生的软化导致析出硬化程度下降。  相似文献   

11.
GH4169合金楔横轧微观组织演变及动态再结晶机制   总被引:1,自引:0,他引:1  
采用金相显微镜和电子背散射衍射(EBSD)技术分析了楔横轧制备的GH4169合金轧件的微观组织演变和动态再结晶机制;利用数值分析方法获得了楔横轧过程中等效应变、应变速率和温度的相互关系和变化规律,并探讨对楔横轧GH4169合金动态再结晶的影响。结果表明,楔横轧的变形特点是导致GH4169合金组织均匀和动态再结晶机制不同的主要原因,较大的断面收缩率有利于组织均匀化;轧件表面以非连续动态再结晶机制为主,而心部以连续动态再结晶机制为主。  相似文献   

12.
为了探索Al-8.9Zn-2.2Cu-2.2Mg-0.15Zr高强铝合金适宜的均匀化退火工艺,通过差示扫描量热法(DSC)和扫描电子显微镜(SEM)等分析手段,研究了该合金在单级和双级均匀化退火过程中的微观组织演变.研究发现:试验合金的铸态组织主要包括α(Al)、α(Al)+Mg(Al,Cu,Zn)2和Al2Cu相;采...  相似文献   

13.
测试了Cu-4Al合金经50%变形后在不同温度下再结晶动力学曲线,并根据公式G=G0exp(-Q/RT)计算出再结晶激活能。  相似文献   

14.
采用Gleeble-3800热模拟试验机研究了低碳高铌钢在不同变形参数下的动态再结晶行为及奥氏体再结晶晶粒尺寸的变化规律。结果表明:低碳高铌钢在较高温度下变形,越易发生动态再结晶行为,再结晶晶粒尺寸也随之增加至32μm;较低应变速率可显著促进试验钢发生完全再结晶,再结晶晶粒的数量与尺寸随之明显增加。  相似文献   

15.
在单道次压缩变形实验中,采用Gleeble-1500热模拟实验机测定了低碳钢SS400和T510L钢在950~1050℃、0.5/s、5/s、变形量80%条件下的热变形行为,研究了变形温度、变形速率对实验钢再结晶行为及再结晶后奥氏体晶粒尺寸的影响,建立了低碳钢的动态再结晶模型。  相似文献   

16.
Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金的时效强化研究   总被引:3,自引:1,他引:2  
对挤压 轧制制备的Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金进行T5、T6两种热处理,通过力学性能测试,试验合金的力学性能优于未添加稀土元素的ZK60合金,在T5处理时的硬度高于T6处理时的,由金相显微观察、透射电子图像分析可知,试验合金的强化来源于时效初期的过渡相与位错的交互作用,435℃×2h固溶 150℃时效后,Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金的脱溶顺序为:GP区→过渡相)→平衡相).其时效温度-时效时间-脱溶产物之间的关系可用自由能-成分关系或过冷奥氏体等温转变曲线来表示.  相似文献   

17.
采用真空感应熔炼技术得到Cu-0.4Cr-0.2Zr-0.15Mg-RE铸锭,通过金相显微镜观察加入不同含量稀土的金相组织,采用SEM观察组织形貌并对合金组织进行EDXS能谱分析,最后测试铜合金的力学性能和导电性能。结果表明:加入La和Ce后,合金晶粒细化,组织均匀致密,Cr、Mg析出相在基体中的分布由条状、带状转变为点状、细块状。稀土元素主要分布在晶界处,加入稀土元素后,合金的抗拉强度有大幅度的提高,分别加入0.10%的La和0.10%的Ce后,合金的峰值强度分别为250.13 MPa和259.32 MPa,相比于不加稀土的212.34 MPa,分别提高了17.80%、22.13%;加入0.15%稀土元素La和Ce后,合金的导电率则随着稀土元素含量的增加呈单调增加,且La对铜合金导电性能的提高作用优于Ce的,但两者相差微小。因此,从提高合金综合性能方面考虑,加入0.10%的Ce是最佳选择。  相似文献   

18.
通过进行光学显微镜、扫描电镜观察及拉伸性能测试,研究了时效态Al-5.5Cu-0.9Mg-0.2Sc-0.15Zr-1.0Ti合金的显微组织及不同温度下的拉伸性能。结果表明:Ti元素的添加,可以在合金晶粒内部产生Al3Ti相。随着时效时间的增加该合金室温抗拉强度和屈服强度均呈先增加后降低的趋势,并在时效8 h时达到最大值。断后伸长率随时效时间的增加呈现出下降的趋势。对T6态的Al-5.5Cu-0.9Mg-0.2Sc-0.15Zr-1.0Ti合金进行高温拉伸试验,其结果表明,随着试验温度的升高,合金的拉伸强度有所下降,而断后伸长率升高。利用SEM对合金的拉伸断口形貌进行观察,结果表明,在常温拉伸加载条件下,合金的拉伸断裂方式是以脆性为主的韧脆混合断裂;在高温拉伸加载条件下,合金断口处存在大量韧窝,断裂方式为韧性断裂。比较室温拉伸与高温拉伸的拉伸断口形貌可知,合金断裂方式由韧脆混合断裂转变为韧性断裂。  相似文献   

19.
采用Gleeble-3500热模拟试验机对TP347含铌奥氏体不锈钢进行单道次等温热压缩试验。热压缩温度为900~1150℃,应变速率为0.005~0.05 s-1。由流变应力曲线的回归分析得到TP347钢的动态再结晶激活能及有关的材料常数。通过金相检验揭示了TP347钢动态再结晶晶粒尺寸的变化。研究表明,TP347钢的动态再结晶晶粒尺寸随着应变速率的增大而减小;由于含铌,导致在相同变形条件下,与304不锈钢相比TP347钢的稳态应力更高,晶粒更加细小。这主要是由于TP347钢中高温析出碳化铌并对晶界及位错运动起钉扎作用所致。  相似文献   

20.
研究了时效时间对Cu-0.2Be-0.5Co合金显微硬度和导电率的影响,采用透射电子显微镜(TEM)观察分析了微观组织随时效时间的变化。结果表明:Cu-0.2Be-0.5Co合金在460℃时效条件下显微硬度和导电率随时效时间的变化规律基本一致:时效初期(0~2 h)急剧升高,时效中期(2~4 h)缓慢增加,时效后期(4~8 h)趋于稳定。析出相结构为Be12Co化合物相,与Cu基体的位向关系为[112]α∥[011]Be12Co。析出相的大量析出和弥散分布导致合金硬度的显著增加,由固溶态的97 HV0.1增加至时效2 h后的243 HV0.1;铜基体晶格畸变程度的恢复导致合金导电率显著增加,由固溶态的32.3%IACS增加至时效2 h后的57.1%IACS。在试验范围内,Cu-0.2Be-0.5Co合金经950℃×1 h固溶+460℃×2 h时效处理后综合性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号