首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
借助OM、SEM及X-ray萃取相分析技术,研究了奥氏体化温度对一种新型二次硬化渗碳钢C61的组织与力学性能的影响。结果表明,当奥氏体化温度较低时,钢中存在M6C、M23C6、Nb(C,N)未溶相,随着奥氏体化温度的升高,碳化物逐渐溶解,在950 ℃时,钢中仅有少量Nb(C, N)残留;当奥氏体化温度大于1000 ℃时,C61钢奥氏体晶粒明显粗化,抗拉强度、屈服强度、冲击韧性大幅降低,晶粒粗化温度为1000 ℃;C61钢最佳奥氏体化温度为950 ℃,此时钢的抗拉强度为1625 MPa,屈服强度为1556 MPa,冲击功为82 J。  相似文献   

2.
通过比较分析了含Nb高速钢离心铸造轧辊不同温度淬火后的碳化物、残余奥氏体及硬度变化规律,获得最佳的淬火热处理工艺。结果表明:随着淬火温度的升高,晶粒度降低,且在淬火温度超过1100℃时,晶粒度下降明显。随着淬火温度的升高,碳化物不断溶解,当淬火温度升至1150℃时,碳化物量含量最低,降至5.7%,残余奥氏体量增加至37.6%。硬度随着淬火温度的升高先上升后下降,当淬火温度为1050℃时,硬度最高,为63.6 HRC。热处理后的碳化物类型主要为颗粒状的MC和片层状M_2C。综合比较,淬火温度控制在1050℃为宜。  相似文献   

3.
针对高温轴承钢Cr14Mo4V开展了微观组织随奥氏体化参数演化规律研究。利用OM、XRD、SEM及硬度测试对Cr14Mo4V钢中碳化物、残留奥氏体、晶粒尺寸及硬度等进行了分析。结果表明,淬火态Cr14Mo4V高温轴承钢微观组织主要包括淬火马氏体、残留奥氏体和带状碳化物;奥氏体化过程中微观组织演化对奥氏体化温度较为敏感,随着奥氏体化温度的升高,残留奥氏体含量逐渐增加,晶粒尺寸逐渐增大,碳化物逐渐溶解,带状碳化物合金元素分布发生变化。Cr14Mo4V轴承钢硬度随奥氏体化温度的升高呈先略微增加后显著降低的趋势,主要受基体固溶度、残留奥氏体含量及晶粒尺寸等因素综合影响。  相似文献   

4.
借助强度和硬度测量手段以及显微组织观察及EDS能谱分析,研究了奥氏体化温度和时间、回火温度对一种实验室冶炼的马氏体不锈钢的微观组织和力学性能的影响。实验结果表明:奥氏体化温度可以显著影响材料的力学性能,当奥氏体化工艺为1050℃-60 min时,材料的硬度最大(49 HRC),抗拉强度最高(1800 MPa)。在回火温度为400~500℃的范围内,回火温度的升高导致了M_7C_3相的沉淀和二次硬化,使材料的硬度和抗拉强度轻微升高;当回火温度进一步升高至700℃时,M_7C_3碳化物发生粗化并部分地转变为M_(23)C_6碳化物,材料的硬度和抗拉强度明显降低。试样在200℃和700℃回火后的拉伸断口表现出混合断裂机理(脆性和韧性),而在500℃表现为韧性特征。该材料最佳的热处理工艺为1050℃-60 min奥氏体化处理+500℃-60min回火处理。  相似文献   

5.
采用透射电镜(TEM)、X射线衍射分析仪(XRD)以及拉伸试验机对超高强度钢中的碳化物和金属间化合物的复合析出强化行为进行了研究。结果表明:在300℃回火时,主要析出大量的ε-碳化物,此时试验钢的强度升高,冲击性能略有降低;在430℃回火时,析出大量的粗大片状渗碳体,试验钢的强度继续提高,但冲击吸收能量迅速降至最低值;随着回火温度继续升高,渗碳体发生溶解,M_2C型碳化物、金属间化合物β-Ni Al相以及逆转变奥氏体开始在马氏体基体中开始析出,试验钢的抗拉强度和硬度值在470℃达到最大,屈服强度在490℃达到峰值。由于M_2C型碳化物、金属间化合物β-Ni Al相和薄膜状逆转变奥氏体的复合析出作用,试验钢在510℃回火5 h后,具有最佳的综合力学性能。当回火温度继续升高,M_2C型碳化物和逆转变奥氏体都发生粗化,钢的强度和冲击性能都有所降低,且经560℃回火后逆转变奥氏体含量达到最大值。  相似文献   

6.
采用金相显微镜、扫描电子显微镜和X射线衍射研究了一种铸造奥氏体耐热耐磨钢的显微组织。结果表明,试验钢铸态显微组织由树枝状的奥氏体晶粒和共晶组织,以及少量呈球形均匀分布的MnS组成,共晶组织中的碳化物呈典型的鱼骨状形貌特征,类型有M_6C型(M主要为Fe、W、Cr、Mo)和MX型(M主要为Nb,X主要为C和N)两种;在1 200℃以上保温固溶处理后,随着保温温度的升高和时间的延长,M_6C型碳化物逐渐溶解,而MX型碳氮化物颗粒球化并长大,硬度逐渐降低。  相似文献   

7.
通过SEM、XRD、硬度及奥氏体含量测试等方法对超高强度M54钢预备热处理工艺进行了研究。结果表明:随着奥氏体化温度的提高,合金元素的未溶碳化物逐渐溶解,基体合金元素及碳元素含量提高,相应的硬度提高,当奥氏体化温度为840℃时,未溶相的残留最多,硬度最低,因此预备热处理最佳的奥氏体化温度为840℃;在630~690℃范围内退火,随着退火温度的升高,残留/逆转变奥氏体稳定性下降,退火后形成未回火的二次马氏体,硬度逐渐上升,因此退火最佳温度为630℃。630℃下退火,时间超过12 h后,硬度低于40 HRC,符合技术加工条件要求,因此,最佳预备热处理工艺为奥氏体化温度选择840℃,退火温度在630℃左右,退火时间应不低于12 h。  相似文献   

8.
通过热模拟试验得到55SiCrV钢的CCT曲线和奥氏体晶粒长大曲线,确定了淬火温度选择范围;利用双因子正交试验,研究了热处理参数对其力学性能及组织的影响。结果表明:在850~930℃加热温度范围内,Cr、V元素形成难溶碳化物,阻碍晶粒长大;随着温度的提高,55SiCrV钢奥氏体晶粒尺寸基本不变,晶粒度达到10级;加热温度930℃以上时,原子扩散能力增大,且难溶碳化物逐渐溶解,奥氏体晶粒度逐渐粗化。在870~930℃淬火温度范围内,随温度提高,55SiCrV钢抗拉强度先升高后下降;随回火温度提高,强度逐渐降低,塑性提高。900℃淬火+410℃回火工艺下,55SiCrV钢组织为针状铁素体与M_3C碳化物组成的细小回火屈氏体,具有较好的疲劳性能和抗弹减性能。  相似文献   

9.
采用力学性能测试、透射电镜(TEM)、X射线衍射(XRD)仪和电子背散射衍射(EBSD)等分析方法,研究了淬火温度对GE1014超高强度钢组织及性能的影响。结果表明,试验钢的抗拉强度随淬火温度的升高先逐渐升高,随后降低,并且在925 ℃达到峰值2112 MPa,规定塑性延伸强度则呈现随淬火温度的升高小幅降低的趋势,试验钢的断面收缩率和U型冲击性能均随淬火温度的升高缓慢升高,在950 ℃附近出现降低趋势;试验钢的原始奥氏体晶粒和马氏体块的尺寸都随着淬火温度的升高而长大,当淬火温度超过925 ℃时,原始奥氏体晶粒尺寸快速粗化,而马氏体块尺寸则全程长大缓慢;850~925 ℃范围内,基体中的残留奥氏体含量随着淬火温度的升高而显著降低;淬火温度低于900 ℃时,试验钢中存在球状富Mo型M6C碳化物,淬火温度升高至900 ℃未观察到未溶相。  相似文献   

10.
对含碳量0.35wt%的无碳化物高强贝氏体钢进行等温贝氏体相变试验,并通过膨胀法、显微组织观察、XRD和拉伸试验等方法研究奥氏体化温度(860~1260℃)对该贝氏体钢相变和组织性能的影响。结果表明,860℃奥氏体化时,贝氏体转变量略高于其它温度,残余奥氏体含量较高,继续升高奥氏体化温度,贝氏体转变量和残奥含量变化不大。此外,随着奥氏体化温度的升高,贝氏体相变动力学加快,这是原始奥氏体晶粒尺寸增加,贝氏体生长空间增大引起的。当奥氏体化温度较低时,虽然贝氏体相变速率较慢,但由于原始奥氏体晶粒细化,残奥含量较多等原因,钢的抗拉强度和伸长率均较高。因此,从提高钢性能角度出发,应降低无碳化物高强贝氏体钢热处理时的奥氏体化温度。  相似文献   

11.
采用光学显微镜观察超细化H13钢在不同奥氏体化温度等温球化退火后的显微组织,并对退火后H13钢的残留碳化物形态及分布进行研究。利用Image Pro-Plus软件对退火后碳化物的分布情况进行定量分析,并利用扫描电镜观察不同退火温度下冲击试样的断口形貌,研究不同退火温度对超细化H13钢组织与性能的影响。结果表明,随奥氏体化温度的升高,超细化H13钢硬度下降,碳化物数量与尺寸减小。当高于880℃进行等温球化退火时,晶粒明显变大,材料的退火态韧性急剧下降,回火后残留奥氏体含量增加,残留奥氏体的存在降低了H13钢的硬度。超细化H13钢在860℃进行等温球化退火,材料的综合力学性能最佳。  相似文献   

12.
通过1000~1200 ℃间隔50 ℃的系列加热温度对5Cr15MoV马氏体不锈钢进行空冷淬火试验,并采用光学显微镜、EBSD和洛氏硬度计对不同温度淬火后组织和硬度进行检测,研究了淬火温度对试验钢组织、晶粒尺寸、残留奥氏体含量以及硬度的影响。结果表明,试验钢淬火后组织为马氏体+未溶合金碳化物+残留奥氏体。随着淬火温度升高,马氏体板条尺寸增大,未溶碳化物量逐渐减少直至消失,残留奥氏体含量先增加后减少。试验钢的硬度变化趋势为先增加后显著降低,在淬火温度为1050 ℃达到最大值60.8 HRC。试验钢硬度主要是马氏体的含碳量、晶粒尺寸、残留奥氏体含量和碳化物含量综合作用的结果。  相似文献   

13.
研究了等温淬火工艺对含铬球墨铸铁组织、硬度、冲击性能和耐磨性的影响。结果表明:奥氏体化温度升高,能促进球状石墨长大,增加残留奥氏体含量。淬火后组织主要为球状石墨、针状贝氏体、含铬碳化物及残留奥氏体。当淬火等温温度在240~270 ℃,随着等温温度升高,试样硬度和耐磨性均降低;在240 ℃等温时冲击韧度较低,继续升高等温温度,冲击韧度先增大后降低;当试样经910 ℃×80 min奥氏体化、270 ℃×180 min等温淬火后,含铬球墨铸铁的硬度可达54.1 HRC、冲击韧度αk可达8.1 J·cm-2,有较好的耐磨性。  相似文献   

14.
针对自主设计的新型Cr-Ni-Mo低合金超高强度钢,开展了奥氏体化温度对其组织与力学性能的研究。结果表明:随奥氏体化温度的升高,钢的强度、硬度和塑性先升高,当奥氏体化温度超过920℃后,强度、硬度和塑性降低。-40℃低温冲击韧性随奥氏体化温度的升高而逐渐升高。奥氏体化温度升高,钢的马氏体板条变宽,晶粒长大,碳化物逐渐溶解。试验钢在测试温度范围内最大抗拉强度1990 MPa,伸长率9.2%,断面收缩率56%,淬火态硬度55.6 HRC,此时,-40℃冲击吸收能量为8 J。  相似文献   

15.
采用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电化学测试等手段,研究了淬火温度对集装箱用30Cr13耐候钢的组织转变、未溶碳化物特征、耐腐蚀性能的影响,并分析了腐蚀机理。结果表明:退火态耐候钢基体主要为铁素体,而淬火态耐候钢主要为马氏体组织;随着奥氏体化温度的升高,耐候钢基体中大颗粒的未溶M_(23)C_6碳化物颗粒的数量逐渐减少,且当奥氏体温度达到1130℃时碳化物颗粒基本都固溶于基体中;淬火态30Cr13耐候钢的表面钝化膜保护性都要高于退火态的,且随着奥氏体化温度的升高,耐候钢的耐点腐蚀性能逐渐提高。淬火过程中,30Cr13耐候钢中未溶碳化物含量的减少有助于提高耐候钢的耐点蚀性能。  相似文献   

16.
利用热膨胀仪、高温共聚焦显微镜和扫描电镜等研究了淬火温度、保温时间和冷却速率等工艺参数对W2Mo9Cr4VCo8高速钢显微组织的影响,并对其硬度和冲击吸收能量进行测试。研究表明,当淬火温度为1100℃时,试验钢中的网状碳化物溶解不充分且分布不均匀;当淬火温度升至1180℃时,奥氏体组织会溶解更多的碳和合金元素,稳定性增强;进一步提高淬火温度至1200℃时,此时高温会引起大量的碳化物发生分解,同时溶入基体的合金元素数量增加,晶粒发生明显长大。当淬火温度在1100~1180℃时,W2Mo9Cr4VCo8高速钢的硬度和冲击韧性随淬火温度的升高而增大,但当淬火温度达到1200℃时,硬度值和冲击韧性减小。当淬火温度为1180℃,保温时间40 min时,钢的硬度达到最高(54.7 HRC),但当保温时间为60 min时,碳化物的平均尺寸增加、数量减少,硬度降低,而冲击韧性随着保温时间的增加而增加,当保温60 min时冲击吸收能量达到22.4 J。随着冷却速率的增加,马氏体转化开始温度(M_s)和结束温度(M_f)降低。因此,高冷却速率可以抑制马氏体转化并增加残留奥氏体含量。  相似文献   

17.
采用OM、SEM、EDS和XRD研究了铌对奥氏体耐热钢组织及高温抗氧化性能的影响。结果表明,未添加Nb元素的耐热钢基体组织为奥氏体+第二相(M_(23)C_6和M_7C_3),奥氏体晶粒比较粗大,碳化物呈链状和骨骼状;添加Nb元素后的耐热钢基体组织不变,但奥氏体晶粒明显细化,晶粒细化程度随Nb含量增加而提高,组织中出现片状Nb C和Nb N,其数量随Nb含量的增加逐渐增多,但当铌含量达到1.5%时,组织中各类碳化物出现长大粘连的现象。在1 000℃和1 200℃条件下,Nb元素的添加不利于抗氧化,随着Nb含量的增加,耐热钢的抗氧化性逐渐下降,并且随着温度升高,抗氧化性能下降越显著。1 000℃×150 h高温氧化试验后,未添加Nb元素的耐热钢为完全抗氧化的,添加Nb元素的耐热钢为抗氧化的;1 200℃×150 h高温氧化试验后,未添加Nb元素的耐热钢为弱抗氧化的,添加Nb元素的耐热钢为不抗氧化的。  相似文献   

18.
通过分析不同奥氏体化温度、不同保温时间时Q345E钢的显微组织及硬度变化,研究了不同奥氏体化温度与保温时间对Q345E钢材组织及硬度的影响。结果表明,奥氏体化温度对Q345E钢的显微组织与硬度产生明显影响。当温度低于1050℃时,随温度升高,硬度值逐渐增大。在1050~1150℃,奥氏体晶粒长大,而合金元素和碳原子偏聚倾向减小,第二相粒子溶解,这个温度范围内硬度降低。奥氏体化温度继续升高,伴随着碳化物的逐渐溶解,材料硬度又有所增大。此外,随保温时间延长,Q345E钢淬火后材料硬度降低。  相似文献   

19.
研究了950~1130 ℃淬火及不同冷却方式对6Cr13马氏体不锈钢显微组织和力学性能的影响。结果表明,随着淬火温度的升高,残留碳化物含量逐步减少,在1050 ℃以上碳化物固溶速度加快,晶粒开始快速长大,残留奥氏体含量增大,导致在1050 ℃淬火硬度达到最大值,之后开始降低,在1150 ℃降低最为明显;950 ℃淬火时该钢种的水冷硬度高于空冷的硬度,而在950 ℃以上空冷硬度高于水冷的硬度;1050 ℃空冷可以获得较高的淬火硬度和较低的残留奥氏体含量,同时具有8%的碳化物含量,具有获得较好的耐磨性和较高的锋利度的条件。  相似文献   

20.
采用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)和X射线衍射(XRD)等研究了不同温度奥氏体化对M54二次硬化钢微观组织及力学性能的影响。结果表明:当奥氏体化温度较低时,试验钢有较多的未溶(Mo, W)6C碳化物和预处理后的粗大晶粒,使其强度降低,冲击性能恶化。提高奥氏体化温度可减少未溶(Mo, W)6C碳化物的数量,同时奥氏体再结晶使晶粒细化,试验钢的强度和冲击性能快速上升,当奥氏体化温度为1060℃时,试验钢具有优异的强韧性配合,而进一步提高奥氏体化温度到1100℃将导致晶粒迅速粗化进而降低冲击性能。利用EBSD研究了不同温度奥氏体化后试验钢的马氏体亚结构,发现马氏体板条束、板条块具有与奥氏体晶粒相似的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号