首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以自主设计的稀土改性Si-Mn-B系贝氏体-马氏体复相耐磨钢为研究对象,利用正交试验研究了不同淬火温度、淬火保温时间、回火温度、回火时间对材料强度、冲击功的影响,以确定最佳热处理工艺,并利用XRD、OM、SEM、TEM方法对其最佳热处理工艺组织进行分析。结果表明:淬火温度对抗拉强度影响最大,回火温度对屈服强度的影响最大,淬火保温时间对冲击功的影响最大。最优热处理方案为:900℃×1.5 h油淬+300℃×3 h回火处理。按此方案热处理后有较好的强韧配合:抗拉强度为1903 MPa,屈服强度为1591 MPa,洛氏硬度为51.4 HRC,无缺口冲击功为267 J。采用彩色金相-化学腐蚀法,组织为下贝氏体(49.6%)、板条马氏体(43.9%)和少量残留奥氏体(6.5%)。  相似文献   

2.
用热处理正交实验方法研究了淬火工艺与回火工艺对KT5331(10Cr11Co3W3Ni Mo VNb NB)钢力学性能的影响。结果表明,KT5331钢的最佳热处理工艺为1080℃保温60 min淬火,680℃保温2 h以上回火,组织为板条状的回火马氏体;淬火和回火参数中,回火温度是影响KT5331钢热处理后力学性能的最主要因素,淬火温度及回火温度对冲击功影响最为明显。淬火温度由1080℃升高至1120℃时奥氏体晶粒出现明显长大;随回火温度升高,材料屈服强度、抗拉强度和硬度明显降低,而冲击功显著升高。  相似文献   

3.
利用正交试验、力学性能测试及组织观察对自行设计的圆锥破碎机衬板用超高强度空冷贝-马复相铸钢的热处理工艺进行了优化。结果表明:回火温度对试验钢的强度影响最大,保温时间对试验钢的无口冲击吸收能量影响最大。试验钢的最佳热处理工艺为:900℃×1.5 h空冷+300℃×2 h回火。最佳热处理工艺下,试验钢的组织为:51.7%下贝氏体+43.4%马氏体+4.9%残留奥氏体,具有较优的综合力学性能,抗拉强度1683 MPa,规定非比例延伸强度1490 MPa、硬度51.3 HRC,无口冲击吸收能量151.4 J。  相似文献   

4.
设计了一种新型低碳Mn-Nb-V(Ti)系低合金强韧X80级管件钢,对比研究了一次淬火回火、二次淬火回火6种不同工艺对其微观组织和力学性能的影响.结果表明:一次淬火X80管件钢抗拉强度最高,达695 MPa,屈服强度最低为526 MPa,冲击功48 J(-50℃);二次淬火加热温度为860℃+630℃×60 min回火的管件钢抗拉强度达652 MPa,屈服强度为585 MPa,冲击功达210 J(-50℃),具有最佳的综合力学性能.分析认为这归因于二次淬火温度在860℃时,组织主要由长条状的铁素体和细晶贝氏体、马氏体组成,以及在随后630℃回火后,块状M-A组元的分解、位错亚结构的回复软化、析出强化和板条边界钝化机制的综合作用.  相似文献   

5.
通过Gleeble-3800热模拟和热处理试验研究了热处理工艺对1.25Cr0.5Mo Si钢组织和性能的影响。结果表明:钢在950℃保温140 min后淬火水冷(冷却速率3~20℃/s),然后710℃保温245 min回火,空冷可获得回火贝氏体组织和优良的综合力学性能。钢板试样经模拟焊后热处理组织为回火贝氏体,钢板在690℃模拟焊后热处理0~32 h后,屈服强度达到400~470 MPa,抗拉强度560~600 MPa。当冲击温度低于-20℃时,冲击功急剧下降。随着模拟焊后热处理时间的延长,碳化物逐渐变粗大并沿晶界分布,导致钢板强度和低温冲击韧性大幅下降。  相似文献   

6.
文成  田玉琬  王贵 《金属热处理》2015,40(4):129-134
以27SiMn钢贝氏体转变的冷速条件和温度范围为依据,采用正交方法进行了分段淬火的热处理试验。研究了淬火温度、淬火保温时间、回火温度、回火保温时间对于热处理后钢材力学性能的影响规律。结果表明,27SiMn钢获得贝氏体组织的最优热处理工艺为:910 ℃,30 min淬火(油冷至450 ℃后空冷至室温)+250 ℃,40 min回火,经该工艺热处理后27SiMn钢的屈服强度从423 MPa 提高到693 MPa,抗拉强度由689 MPa提高到890 MPa,伸长率和断面收缩率分别为28%和67%,冲击吸收能量由原来的的13 J提高到64 J,冲击韧性显著改善,满足了工程机械用钢的需求。  相似文献   

7.
回火工艺对在线淬火12MnNiVR钢组织和性能的影响   总被引:1,自引:1,他引:0  
利用SEM、TEM等分析方法及性能检测研究了回火工艺参数对在线淬火12MnNiVR钢组织及性能的影响。结果表明,在线淬火后的12MnNiVR钢板淬火组织为淬火马氏体加少量淬火贝氏体的复合组织;经(625~655)℃×60min回火可以获得均匀的回火贝氏体组织,其综合力学性能均超过要求。抗拉强度可达到628MPa以上,屈服强度可达562MPa以上,伸长率达21%以上,-20℃冲击功达到220J以上。  相似文献   

8.
采用正交试验法研究了淬火温度、淬火时间、回火温度、回火时间对27CrMo钢力学性能的影响。结果表明:淬火温度对性能影响较小;回火温度是影响屈服强度、抗拉强度和冲击功最主要的因素。根据试验结果确定了工业试验的热处理参数并进行了试验验证。当淬火温度880℃、回火温度670℃时,Ф177.8 mm×10.36 mm钢套管的屈服强度、抗拉强度、硬度、冲击功均满足P110钢级的要求并且波动较小。  相似文献   

9.
针对五矿营口中板有限责任公司对耐磨钢的开发,设计采用了C-Mn-Cr-B低合金化学成分体系,试验研究了淬火、回火工艺对30 mm厚钢板组织性能的影响,得到了最佳的热处理工艺,即加热时间42 min、在920 ℃保温15 min 淬火,可以得到均匀的板条马氏体组织;再经过加热时间50 min、400 ℃回火处理后,得到回火马氏体组织,钢板综合力学性能良好,屈服强度为1 080 MPa,抗拉强度为1 190 MPa,断后伸长率为25.5%,-20 ℃冲击功均值为39 J,硬度为399HB,满足GB/T 24186-2009标准对NM400耐磨钢的要求。  相似文献   

10.
针对水电用SX780CFZ35特厚钢板需具备易焊接、高强度、良好的塑性和低温韧性的要求,研究了热处理工艺对其力学性能及金相组织的影响。结果表明,在相同淬火温度下,钢板屈服强度、抗拉强度随回火温度的升高而降低,但冲击功随回火温度的升高而升高,屈强比则呈先上升后下降的趋势。在相同回火温度下,随淬火温度的升高,钢板强度增加,冲击功降低。820 ℃淬火,钢板组织存在较大比例未溶铁素体,为贝氏体和细小铁素体双相组织;860 ℃以上淬火,钢板组织为贝氏体,回火后为回火索氏体组织。热处理工艺为900 ℃淬火+620 ℃ 回火时,钢板冲击功达到100 J以上,强度依然能符合技术协议要求,为最佳热处理工艺。  相似文献   

11.
《铸造技术》2017,(8):1868-1871
研究了回火温度和保温时间对基坑工程用热轧态30MnCr22钢管显微组织以及抗拉强度、屈服强度、断后伸长率、冲击功和硬度的影响。结果表明,抗拉强度、屈服强度和硬度随着回火温度升高而逐渐降低,而冲击功逐渐增大;回火温度不变,延长回火保温时间时,钢的抗拉强度、屈服强度和硬度逐渐降低,断后伸长率和0℃冲击功逐渐增大;基坑工程用热轧态30MnCr22钢管适宜的热处理工艺为:回火温度540℃,回火保温时间50 min。  相似文献   

12.
针对五矿营口中板有限责任公司对耐磨钢的开发,设计采用了C-Mn-Cr-B低合金化学成分体系,试验研究了淬火、回火工艺对30 mm厚钢板组织性能的影响,得到了最佳的热处理工艺,即加热时间42 min、在920 ℃保温15 min 淬火,可以得到均匀的板条马氏体组织;再经过加热时间50 min、400 ℃回火处理后,得到回火马氏体组织,钢板综合力学性能良好,屈服强度为1 080 MPa,抗拉强度为1 190 MPa,断后伸长率为25.5%,-20 ℃冲击功均值为39 J,硬度为399HB,满足GB/T 24186—2009标准对NM400耐磨钢的要求。  相似文献   

13.
采用相变仪对34Mn6钢的奥氏体连续冷却转变(CCT)曲线进行测定和分析。结果表明,当冷却速度为0.1~1℃/s时,相变组织为铁素体和珠光体;当冷却速度≥5℃/s时开始发生贝氏体转变;当冷却速度≥10℃/s时开始发生马氏体相变;当冷却速度50℃/s时,奥氏体几乎全部转变为马氏体。采用正交试验法研究了淬火温度和保温时间、回火温度和回火时间对34Mn6钢力学性能的影响。结果表明,淬火温度对性能影响较小;回火温度是影响屈服强度、抗拉强度和冲击吸收能量最主要的因素。根据试验结果确定了工业试验的热处理参数,并进行了试验验证。结果表明,139.7 mm×9.17 mm套管的屈服强度处于标准的中上限范围;冲击吸收能量的最小值高于标准71.5%,断后伸长率的最小值高于标准48.4%。  相似文献   

14.
以5CrMnMoV热作模具钢材料为研究对象,研究了热处理工艺对其力学性能的影响。结果表明:当淬火温度为1000℃,保温0.5h,回火温度为575℃,保温1.5 h后的力学性能最佳,此时所制备的热作模具钢屈服强度为1376MPa,抗拉强度为1573 MPa,伸长率为11.9%,断面收缩率为32,3%。  相似文献   

15.
采用不同的退火、淬火和回火工艺对含铟新型建筑高强钢棒进行了热处理,并进行了拉伸和冲击试验。结果表明:随退火温度从880℃提高1000℃,退火时间从2 h延长至6 h,淬火温度从890℃提高至950℃,淬火时间从10 min延长至50 min,回火温度从540℃提高至600℃,回火时间从1 h延长至3 h,钢棒的抗拉强度、屈服强度、断后伸长率和冲击吸收功均先增大后减小。优化的热处理工艺为:960℃×4 h退火+920℃×30 min淬火+580℃×2 h回火。  相似文献   

16.
对试验钢进行了不同的两相区直接淬火+回火处理。对试样显微组织进行了观察,并对力学性能进行了检测,研究了淬火温度和回火温度对试验钢组织和性能的影响。结果表明,钢板回火显微组织以多边形铁素体+岛状回火马氏体为主。随着直接淬火温度的升高,回火马氏体含量增加,铁素体含量减少,组织中少量珠光体逐渐转变为贝氏体;屈服强度和抗拉强度均升高,屈强比先保持恒定后有所升高,伸长率逐渐下降,冲击功则是先大幅降低后几乎不变。当回火温度低于400℃时,马氏体形态没有明显改变;当回火温度超过500℃时,马氏体岛开始分解,碳化物析出量增加。随着回火温度升高,抗拉强度几乎呈线性降低,屈服强度则先升高后降低,屈强比升高,伸长率和冲击功先下降后提高。  相似文献   

17.
黄开有  唐明华 《热加工工艺》2012,41(20):155-157
采用正交试验法研究了淬火加热温度、淬火保温时间、回火加热温度和回火保温时间对26CrMoNbTiB钻杆用钢强韧性的影响.结果表明,回火加热温度对实验钢的强度和伸长率影响最大,淬火加热温度次之.当淬火温度为910℃、保温时间为35 min,回火温度和时间分别为590℃和65 min时,26CrMoNbTiB钢的屈服强度为898 MPa,抗拉强度为973 MPa,伸长率为17.4%,具有良好的综合力学性能.  相似文献   

18.
通过热处理工艺实验及SEM与TEM组织观察,研究了不同淬火及回火工艺对碳锰钢与中锰钢组织和性能的影响。结果表明,提高锰含量显著降低了实验钢的Ac1和Ac3温度,缩小了两相区范围;随着淬火温度的升高,实验钢的屈服强度、抗拉强度有所降低;随着回火时间的增加,实验钢的冲击功升高;碳锰钢与中锰钢最优淬火温度分别为800~900℃和750~800℃,其屈服强度、抗拉强度分别为818、847和820、878 MPa,-40℃的冲击功在200 J左右,均具有良好的综合性能,中锰钢具有低成本、高强度及高韧性的综合优势。两种实验钢均可获得细小均匀的马氏体组织,马氏体板条束交错分布,随着回火时间的增加,实验钢中大尺寸碳化物的数量有所降低。  相似文献   

19.
研究了回火温度对一种低温压力容器用低合金高强度(HSLA)贝氏体钢组织和性能的影响。结果表明,经过910℃淬火后组织为粒状贝氏体,贝氏体板条界面及板条上分布有条状或块状M-A岛。回火温度在350~550℃区间升温时,M-A岛分解析出渗碳体;回火温度为635℃时,M-A岛完全分解为细小弥散的渗碳体颗粒;回火温度升至700℃时,贝氏体铁素体组织发生再结晶,板条结构消失,成为块状铁素体结构,渗碳体明显粗化。随着回火温度的升高,抗拉强度降低,伸长率和-50℃冲击功增加,屈服强度先升高后降低,冲击断口由脆性解理断口向韧性纤维断口变化。经过910℃淬火+635℃回火后达到最佳的强韧匹配度,抗拉强度为606 MPa,-50℃冲击功达到279 J。  相似文献   

20.
研究了回火温度对一种低温压力容器用低合金高强度(HSLA)贝氏体钢组织和性能的影响。结果表明,经过910℃淬火后组织为粒状贝氏体,贝氏体板条界面及板条上分布有条状或块状M-A岛。回火温度在350~550℃区间升温时,M-A岛分解析出渗碳体;回火温度为635℃时,M-A岛完全分解为细小弥散的渗碳体颗粒;回火温度升至700℃时,贝氏体铁素体组织发生再结晶,板条结构消失,成为块状铁素体结构,渗碳体明显粗化。随着回火温度的升高,抗拉强度降低,伸长率和-50℃冲击功增加,屈服强度先升高后降低,冲击断口由脆性解理断口向韧性纤维断口变化。经过910℃淬火+635℃回火后达到最佳的强韧匹配度,抗拉强度为606 MPa,-50℃冲击功达到279 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号