首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Y合金进行高温等温压缩试验,变形温度和应变速率分别为650~850℃和0.001~10 s-1,对合金高温热压缩过程中的变形行为进行研究。结果表明:其流变应力随应变速率的提高而增大,随变形温度的升高而减小。并根据动态材料模型绘制和分析了该合金的热加工图,得出了热变形过程的最佳工艺参数为:温度为800~850℃,应变速率范围为0.001~0.1 s-1。  相似文献   

2.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Ag合金进行高温等温压缩试验,当热压缩应变速率为0.001~10 s-1、热变形温度为650~950℃时,同时对合金高温热压缩的热加工图以及变形机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为Q=343.23 k J/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。根据动态材料模型计算并分析了合金的热加工图,并且获得了试验参数范围内热变形过程的最佳工艺参数:温度为750~800℃、应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

3.
在Gleeble-1500D热模拟试验机上,通过高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5 s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明:在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能(Q)为485.6 kJ/mol和热变形本构方程。根据动态材料模型计算并分析了该合金的热加工图,利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,温度为750~800℃,应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

4.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

5.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

6.
李妮  赵飞  叶萃  李军帅 《热加工工艺》2015,(2):41-43,46
采用Gleeble热模拟试验机,对锻态TB6钛合金在变形温度660~1050℃,应变速率0.001~0.1s-1的条件下进行等温恒应变速率压缩试验,研究了TB6钛合金的高温压缩变形行为。基于Prasad判据绘制了该合金的热加工图,结合变形微观显微组织分析,确定了该合金在(α+β)两相区至β相区的最佳工艺参数。结果表明:当应变速率0.01~0.1s-1,变形温度980℃时,其变形机制为动态回复,失稳现象不明显。最终确定了应变速率为0.001~0.1 s-1,变形温度为815℃左右,为该合金的最佳热加工工艺参数。  相似文献   

7.
采用热模拟压缩试验研究铸态TiNiNb合金在变形温度为700~1050℃、应变速率为0.01~10s-1条件下的热变形特征,基于试验结果建立了铸态TiNiNb合金的热变形本构方程.根据动态材料模型,计算并分析合金的热加工图.利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,加热温度为750~880℃、应变速率为0.3~10s-1,或者加热温度为880~950℃、应变速率为0.01~0.5 s-1.  相似文献   

8.
在Gleeble-1500热模拟试验机上对6082铝合金进行多组热压缩试验,得到6082铝合金在350~500℃和0.01~5 s-1条件下的流变应力数据。根据试验数据建立基于动态材料模型的6082铝合金热加工图,结合压缩变形后的微观组织观察分析,最终获得试验参数范围内6082铝合金热变形的最佳工艺参数。结果表明:保持较高功率耗散效率的加工安全区集中在变形温度430~490℃、应变速率0.1~0.3 s-1的区域,该区域成形时合金主要发生动态再结晶。根据热加工图及微观组织分析,建议在温度440~480℃、应变速率0.1~0.2 s-1范围内选择6082铝合金热成形的工艺参数。  相似文献   

9.
利用Gleeble-3800对Ti6242合金进行热模拟压缩试验。研究了压缩量为60%、应变速率分别为0.01、0.1、1、10 s-1,变形温度分别是900、950、1000、1050、1100℃条件下试样的热变形行为。根据试验参数得出Ti6242合金本构方程,绘制Ti6242合金真应力-应变曲线,基于动态材料模型建立热加工图。结果表明,流变应力随着变形温度的升高而下降,随着应变速率的增加而升高,变形激活能Q=453.74 k J/mol,最佳热加工工艺为变形温度1000~1050℃应变速率0.1 s-1左右。  相似文献   

10.
利用Gleeble-1500D热模拟试验机,在应变速率为0.01~10 s-1,变形温度为1000~1150℃条件下对铸态27Si Mn钢进行等温恒应变速率压缩试验。通过真应力-真应变曲线,分析了应变速率和变形温度对流变应力的影响规律,建立了铸态27Si Mn钢热变形时的本构方程和热加工图。结果表明,铸态27Si Mn钢高温变形时的峰值应力随应变速率的增大和变形温度的降低而升高;变形激活能为Q=369.0 k J/mol;热变形失稳区域集中在变形温度1000~1060℃、应变速率为1~10 s-1的区域内;最优热加工条件为变形温度1130~1150℃,应变速率4~10 s-1的区域,此时表现为典型的动态再结晶,对应的峰值效率达到35%。  相似文献   

11.
采用Gleeble-1500D热模拟试验机,研究了Cu-0.8Cr-0.3Zr合金在变形温度为650~950℃、应变速率为0.001~10 s-1、总压缩应变量60%条件下的流变行为,对热变形过程中的组织演变和动态再结晶机制进行了分析,同时分析了该合金的热加工图。结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,且对应的峰值应力也越小。利用逐步回归的方法建立该合金的流变应力方程。绘制了Cu-Cr-Zr合金的热加工图,确定了其热加工时的安全区与失稳区,得出了该合金在实验参数范围内热变形过程的最佳工艺参数:温度范围为850~900℃,应变速率范围为0.1~1 s-1。  相似文献   

12.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr和Cu-Cr-Zr-Y合金,进行高温等温压缩试验,研究了在变形温度为650~850℃、应变速率为0.001~10 s-1条件下两种合金的流变应力的变化规律,测定了真应力一应变曲线,从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和本构方程,并利用光学显微镜分析了合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:稀土元素Y的加入细化了微观组织,提高了Cu-Cr-Zr合金的动态再结晶体积分数,并且大幅降低了合金的热变形激活能Q,改善了其热加工性能。  相似文献   

13.
采用Gleeble-1500热模拟实验机进行热压缩试验,研究ZA27合金的热变形行为,在变形温度为200~350℃、应变速率为0.01~5 s-1、工程应变为60%,基于Murty准则,建立ZA27合金的加工图。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;在变形温度为200~210℃、应变速率为0.01~0.1 s-1和变形温度为250~350℃、应变速率为1~5 s-1的2个区域内易产生流变失稳现象;动态再结晶是导致流变软化及稳态流变的主要原因,ZA27合金的安全热加工区域的变形温度在250~350℃之间、应变速率在0.1~1 s-1之间。  相似文献   

14.
在Gleeble-1500D热模拟机上采用等温压缩实验研究Zn-8Cu-0.3Ti锌合金的高温流变行为,获得锌合金在变形温度为230~380℃、应变速率为0.01~10 s-1和变形程度为50%条件下的真应力—应变曲线,根据动态材料模型(DMM)建立锌合金的热加工图。结果表明:Zn-8Cu-0.3Ti锌合金在实验条件下具有正的应变速率敏感性,流变应力随着应变速率的增大而增大,随着变形温度的升高而减小,该合金的流变应力行为可用Arrhenius方程来描述。在本研究条件下,Zn-8Cu-0.3Ti锌合金在热变形时存在一个失稳区,即应变速率0.2 s-1以上的区域;在应变速率小于0.001 s-1和340~370℃温度范围内,最大功率耗散系数为0.53,该安全区域内合金的变形机制为动态再结晶。  相似文献   

15.
采用Gleeble-1500热模拟试验机对AZ61镁合金在变形温度为250~400℃、应变速率为0.001~10.000s-1条件下进行热压缩试验,研究了合金的热压缩变形行为及热加工图。结果表明,合金在高应变速率(10.000s-1)变形条件下具有较高的能量耗散率;该工艺范围内动态再结晶同时在初始晶界和孪晶上发生,合金具有较高的再结晶程度。因此,变形温度为250~400℃、应变速率为10.000s-1是较好的热加工工艺。  相似文献   

16.
采用Gleeble-1500热模拟机进行恒温和恒速压缩变形实验,变形温度为300~450℃和应变速率为0.001~1 s-1,研究了新型Al-Zn-Mg-Cu合金的高温塑性变形行为,并根据动态材料模型(DMM)建立了合金的加工图。结果表明,合金高温压缩变形均存在稳态流变特征且属于正应变速率敏感材料;在实验范围内,变形温度450℃、应变速率0.001 s-1的高温低应变速率变形区域的功率散耗率最大,约为0.61;合金热变形的最佳工艺参数为:热加工温度390~410℃,应变速率0.018~0.135 s-1。  相似文献   

17.
在Gleeble-1500D热模拟机上对Zn-Cu-Ti合金进行等温压缩试验,研究了变形温度为150~240℃,应变速率为0.01~10 s-1,变形量为50%时锌合金的热变形行为。采用光学显微镜观察热压缩过程中微观组织的变化。结果表明,锌合金在热压缩过程中发生了动态再结晶。锌合金的峰值流变应力随变形温度的升高和变形速率的下降而降低,该合金的流变应力模型可用Arrhenius方程来描述。试验中发现,该合金存在两个热加工安全区,即温度为150~210℃、变形速率为0.67~10 s-1区域和温度为215~240℃、变形速率为0.01~0.98 s-1区域。最佳热加工工艺参数:变形温度为235~240℃,变形速率为0.09~0.11 s-1,功率耗散效率为35%。  相似文献   

18.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

19.
《连铸》2019,(6)
针对420 MPa级别海洋工程用热轧H型钢,在800~1 100℃、变形速率为0.01~5 s-1条件下进行了等温单道次轴向热压缩试验研究。根据Gleeble3800热模拟试验机试验结果,绘制应力—应变曲线并获得峰值应力,建立了该级别钢的热压缩变形抗力本构方程及热加工图并对其通过观察形变组织进行验证。结果表明:在0.01~1 s-1较低应变速率下主要以发生动态再结晶为主,第二相粒子沉淀析出使得5 s-1条件下发生加工硬化现象,呈现动态回复;综合分析热加工图与变形后组织得到真应变0.4时的适合热加工工艺区间为温度范围1 000~1 080℃,应变速率0.01~0.5 s-1;真应变0.6时的适合热加工的工艺区间为温度范围1 000~1 060℃,应变速率0.05~0.3 s-1,为后续热加工工艺提供了可靠的保证。  相似文献   

20.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号