首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
为研究热激处理(63 ℃、20 min)发酵剂菌种(唾液链球菌嗜热亚种和保加利亚乳杆菌德氏亚种混合菌种)对奶酪成熟过程中品质特性的影响,对两种不同菌种所制作奶酪基本组成及成熟过程中的质构、感官、蛋白降解、风味物质等指标进行了测定。结果表明,热激处理菌种对奶酪基本组成影响不大,但热激处理菌种有利于奶酪成熟过程中蛋白质的降解,进而使奶酪的硬度和咀嚼性显著降低,也促使奶酪在成熟120 d时形成了更多的醛类、酮类、酯类等主要挥发性风味物质,同时奶酪的风味和组织状态的感官评价也较好。  相似文献   

2.
Cheese ripening acceleration is of continuous interest for the industry. High-pressure (HP) treatment of starter cultures used in cheese-manufacturing offers the potential to accelerate ripening by increasing the activity of their intracellular peptidases that contribute in the development of desired cheese organoleptic characteristics.The objective of the present research was the investigation of the effect of HP treatment (200 MPa-20 °C - 20 min) directly on white brined cheese or on the starter culture used for its manufacture (Str. thermophilus:L. lactis:L. bugaricus 2:1:1). For this purpose, the microbial, textural, physicochemical and organoleptic characteristics and proteolysis were assessed during the 2nd stage of ripening in cold stores. Control cheese without any treatment was also studied.Cheeses made with HP-treated starters had increased secondary proteolysis. Organoleptic scoring of these cheeses was higher during the whole storage period compared to control and HP-treated cheese. Their superiority was evident even at the early stages of ripening in cold stores, since no bitterness was detected. On the contrary, although HP treated cheeses showed the highest increase in aminopeptidases activities, this was not correlated with the studied ripening indices or the organoleptic characteristics.According to the results, HP-treated starter culture can accelerate proteolysis and potentially the ripening of cheese-in-brine.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on cheeses in brine starter cultures or on whole cheeses can be effectively used for the production of products with reduced ripening time. This is of great importance for the cheese industries, since the storage period for ripening is long (higher than two months), while applying HP treatment as suggested in this study, this time may be reduced to less than one month, producing cheeses of superior quality.  相似文献   

3.
高压CO_2对树莓汁品质的影响   总被引:1,自引:0,他引:1  
研究了高压二氧化碳(High Pressure Carbon Dioxide,HPCD)对树莓汁品质的影响。处理条件为:压强10、20、30MPa,温度35、45、55℃,时间15、30、45、60min。测定其浊度、褐变指数、悬浮稳定性、pH、可溶性固形物含量和色泽。处理后样品褐变指数降低,浊度和悬浮稳定性增加,pH、可溶性固形物含量和色泽没有显著变化。  相似文献   

4.
The effect of high pressure carbon dioxide (HPCD) on the quality of carrot juice was investigated. The L-value of HPCD-treated juices increased significantly (P < 0.05) as compared to untreated juices, and the a-value exhibited an increase tendency with increasing the treatment time. However, the b-value of HPCD-treated juices did not change. The browning degree (BD) and pH of HPCD-treated juices decreased, the cloud and titratable acidity (TA) increased significantly, the UV–visible spectra of juices were lower, but the total soluble solid (TSS) and the carotenoids of juices were stable. The particle size of juices treated by HPCD for 15, 30 and 45 min increased significantly (P < 0.05), for 60 min showed a noticeable decrease and was almost close to untreated juice. HPCD treatment could not alter the Newtonian flow behavior of the carrot juice, but caused a significant increase in juice viscosity (P < 0.05).Industrial relevanceCarrot juice is one of the most popular vegetable juices, but it requires severe heat treatment for protection from spoilage due to a higher pH, its heat-sensitive quality is inevitably destructed. In this study, HPCD can avoid the drawbacks of the heat treatment as a novel non-thermal pasteurization, available data are provided for the application and evaluation of HPCD in the juice industry.  相似文献   

5.
The formation of spore clumps of Bacillus coagulans and Bacillus licheniformis during high-pressure carbon dioxide treatment (HCT) was investigated. As the treatment time increased, the number of spore clumps increased. After 120 min, single spore decreased to 20-35% of the population. Addition of a surfactant decreased the hydrophobicity of spore surface and increased both the number of single spores and the rate of inactivation ratio of B. coagulans and B. licheniformis spores.  相似文献   

6.
The effects of the addition of carbon dioxide (CO2) under pressure (1.6 × 105 Pa at 8 °C) to pasteurised Prato cheese milk (pH 6.0) was investigated through 120 d of refrigerated storage. The addition of CO2 decreased the curd formation time (30 min), the total manufacturing time (47 min), and the pH of Prato cheese, thus leading to reduced moisture content. The CO2 treated cheese showed higher firmness and fracturability due to the greater whey loss. In contrast, the microorganism counts, cheese yield, protein loss, cohesiveness, springiness, and gumminess were not significantly affected by the treatment. For the lactose fermentation, no significant differences were observed. The addition of CO2 did not change the proteolysis indexes, and no significant differences were observed in the sensory acceptance of the CO2 treated cheese, which was well accepted by consumers.  相似文献   

7.
Effect of high pressure gaseous carbon dioxide treatment (HGCT) at 6.5 MPa, 35 degrees C on the germination of bacterial spores was investigated. Germination of bacterial spores was estimated by the decrease of heat tolerance. Approximately, 40% of Bacillus coagulans and 70% of Bacillus licheniformis were germinated by HGCT for 120 min at 35 degrees C, respectively. Germination was confirmed by phase contrast microscopy. The effect of hydrostatic pressure treatment (HPT) at 6.5 MPa, 35 degrees C on the germination of B. coagulans and B. licheniformis spores were also investigated. Spores did not germinate by HPT alone at 6.5 MPa for 120 min.  相似文献   

8.
The effect of goats’ milk lactoperoxidase (LP) system on the activity of commercially available mesophilic cheese starter cultures was investigated. The growth and acid production of the starter cultures were measured at 2 h intervals for 8 h in goats’ milk kept at 30°C. Most of the starter cultures examined were found to be sensitive to the LP system, but varied in their susceptibility to inhibition. The activity of the mixed starter cultures CHN11, CHN22, CHN19, DCC240 and Flora Danica Normal was strongly inhibited by the LP system. However, the mixed starter culture LL 50C showed resistance to the LP system. The single strain culture Lactococcus lactis subsp. lactis NCDO 605 was inhibited by the LP system. However, the cultures Lactococcus lactis subsp. diacetylactis NCDO 176 and Leuconostoc mesenteroides subsp. cremoris ATCC 33313 were insensitive to the LP system. The results of this study indicate the need for routine screening of starter cultures for resistance to the LP system before using them for cheesemaking from goats’ milk preserved by the LP system.  相似文献   

9.
The effect of six wild strains on the volatile profile of the PS cheese was investigated and compared to that generated from industrial starters generally used to produce PS cheese. All cheeses were subjected to microbiological, physicochemical, and volatile compounds analyses. The DGGE of the 16S rDNA analysis was also applied. The volatile compounds generated during ripening were studied through the SPME and the GC-MS methods. No difference was detected between the experimental and control cheeses throughout chemical and microbiological analyses, while the DGGE results showed the presence of Streptococcus thermophilus in all cheeses, and the dominance of Enterococcus durans, Lactobacillus rhamnosus, and Lactobacillus casei in most of the experimental cheeses. Moreover, the presence of Lactococcus lactis species as in the control and in the experimental P2 and P4 cheeses was also revealed. The SPME results showed more pronounced volatile compounds in the experimental cheese samples than in the control ones.  相似文献   

10.
The effect of high pressure (HP; 300 and 400 MPa for 5 min at 6 °C) on physico-chemical, microbial, color, texture and sensorial characteristics of starter-free fresh cheeses stored at 4 and 8 °C was studied. Physico-chemical parameters considered were total solids, fat, total protein, pH, whey loss and water activity. The microbiological quality was studied, on cheeses stored at 4 and 8 °C, by enumerating aerobic mesophilic bacteria, lactococci, psychrotrophic bacteria, Enterobacteriaceae, Escherichia coli, molds and yeasts. Cheeses treated at 300 and 400 MPa, stored at 4 °C, presented a shelf-life of 14 and 21 days, respectively, compared to untreated control cheese, which presented a shelf life of 7 days. On the other hand, HP treatments modified the texture (more firm) and color (more yellow) compared to control cheeses. These changes were detected by instrumental and sensory analysis.  相似文献   

11.
The effect of high pressure treatment on the inactivation of starter bacteria and spoilage yeasts in a commercially manufactured fresh lactic curd cheese was investigated. Fresh cheeses made from pasteurised bovine milk using a commercial Lactococcus starter preparation were vacuum-packaged and subjected to high pressure treatment within the range of 200 to 600 MPa for 5 min at ambient temperature (≤ 22 °C), and subsequently stored at 4 °C for up to 8 weeks. The number of viable starter bacteria and spoilage yeasts were enumerated immediately after treatment and at time intervals of 1, 2, 3, 4, 6, and 8 weeks during refrigerated storage. The viable count of Lactococcus in the cheeses treated at 200, 300, 400, and 600 MPa, showed approximate reductions of 2, 5, 6, and 7 log units under aerobic incubation conditions; and 3, 5, 6, and 7 log units under anaerobic incubation conditions. Treatment at 200 MPa did not significantly prevent the growth of yeasts, but in samples subjected to pressures ≥ 300 MPa, the growth of yeasts was effectively controlled for 6 to 8 weeks.Industrial relevanceAustralian specialty cheese manufacturers are interested in extending the shelf-life of selected products to extend domestic distribution and to take advantage of export opportunities. The potential domestic and export market of fresh lactic curd cheese can be hampered by relatively short shelf-life. High pressure processing (HPP), under optimised conditions, can be utilised as an effective tool to extend shelf-life while maintaining the quality attributes of this product.  相似文献   

12.
Leuconostoc mesenteroides subsp. cremoris, Leuconostoc pseudomesenteroides and Lactobacillus danicus were grown to early stationary phase in MRS and a cheese based medium (CBM). Lb. danicus had lower aminopeptidase and aminotransferase activity after growth in CBM compared with growth in MRS. Lb. danicus showed aminotransferase activity on all 20 amino acids investigated after growth in CBM; growth in MRS gave higher activities but on fewer amino acids. Highest activity was on aromatic amino acids. Lb. danicus had generally higher and broader aminopeptidase and aminotransferase activity than the Leuconostoc species. When grown in CBM the aminotransferase activity was more similar between Lb. danicus and the leuconostocs. Lb. danicus and Leu. pseudomesenteorides strains had activity on substrates containing short chain fatty acids; activity on C8 and C12 was only seen for the leuconostocs. The results show that the potential role of heterofermentative bacteria in cheese flavour formation involves specific esterase and aminotransferase activities.  相似文献   

13.
White cheese samples were manufactured from bovine milk using three different commercial direct vat starter cultures (DVS-1, -2 and -3) and a lyophilized culture, and ripened at 4 ± 1°C for 90 days. The composition, titratable acidity and ripening indices of the cheese samples were determined on the 2nd, 30th, 60th and 90th days of ripening. The ratios of total solids, protein and fat were higher for cheeses manufactured using DVS-2 and lyophilized cultures but the titratable acidity in cheese produced using DVS-3 and lyophilized cultures was higher (P < 0.01). The mean value of the ripening indices of the cheese produced using the lyophilized culture was lower than the cheeses produced with added DVS cultures (P < 0.05). The total solids, ash, salt ratios, titratable acidity and ripening indices values increased for all types of white cheeses during ripening (P < 0.05).  相似文献   

14.
以新鲜牦牛乳为原料,分别添加嗜温、嗜热和混合(嗜温∶嗜热=1∶1)三种发酵剂制作硬质干酪,研究在1~180 d成熟过程中,不同类型发酵剂制作的干酪中蛋白降解和ACP(酸性磷酸酶)对其品质的影响。结果表明:牦牛乳硬质干酪成熟过程中发挥作用的ACP主要来自发酵剂,且干酪中蛋白降解受ACP影响显著,ACP与PPN(多肽氮)呈强正相关性(r=0.720),与CN(酪蛋白氮)和PN(蛋白氮)呈强负相关性。三种干酪PPN在60~120 d均保持稳定状态。不同类型的发酵剂对干酪蛋白降解强弱不同,过强或过弱均会影响到干酪的品质,嗜温发酵剂对干酪蛋白降解最弱,该干酪风味比较清淡;嗜热发酵剂对干酪蛋白降解能力最强,该发酵剂制作的干酪苦味较重,但组织状态较好;混合发酵剂对蛋白降解适中,该干酪发酵风味浓郁,组织状态较佳。   相似文献   

15.
研究超高压(Ultra High Hydrostatic Pressure,HHP;200,600 MPa/10min)处理对5种市售干酪的硬度、黏着性、弹性、内聚性、咀嚼性和回复性6个功能特性的影响。结果显示,5种干酪在200 MPa处理时,其黏着性、弹性、内聚性、回复性差异不显著(P0.05),即较低压力处理对干酪的质构影响不大;超高压处理后,干酪的硬度和耐咀性分别降低31%,39%,且压力越大降低越显著(P0.05);高压处理后蓝纹、稀奶油干酪的内聚性分别增加了21%,15%;帕马森、切达干酪经超高压处理其各个性质基本无显著变化,而马索里拉、蓝纹、稀奶油干酪的各个功能性均有显著差异,说明超高压处理对干酪质构的影响与水分含量有关,即水分含量越高的干酪其质构受超高压处理变化越显著。  相似文献   

16.
发酵剂对牦牛乳硬质干酪成熟过程中生物胺的影响   总被引:1,自引:0,他引:1  
乳酸菌产生物胺的能力具有菌株特异性,因此,为了探究不同种类发酵剂对牦牛乳硬质干酪中生物胺形成的影响,该试验利用高效液相色谱对3种不同发酵剂制作的硬质干酪成熟过程中生物胺进行了测定和分析。结果表明,嗜热和嗜温发酵剂牦牛乳硬质干酪中检测出2-苯乙胺、腐胺、尸胺、组胺和酪胺,混合发酵剂干酪中检测出腐胺、2-苯乙胺、尸胺和酪胺。各生物胺之间呈现正相关性。3种不同发酵剂干酪在1~6个月成熟过程中,其各生物胺整体呈现增加趋势,嗜热、嗜温和混合发酵剂干酪中总生物胺最高含量分别为(448.3±9.6)、(456.8±58.4)、(293±24.5)mg/kg。组胺和酪胺是2种毒性相对高的生物胺,嗜热发酵剂干酪中组胺和嗜温发酵剂干酪中酪胺最高,其最高含量分别为(20.8±7.9)、(92.9±6.7)mg/kg,混合发酵干酪中未检测出组胺,酪胺含量次之,3种不同发酵剂干酪中组胺、酪胺含量均低于推荐安全剂量50 mg/kg和100 mg/kg。这为合理选择发酵剂和控制干酪中生物胺形成提供了依据。  相似文献   

17.
Recognized to confer health benefits to consumers, probiotics such as Lactobacillus acidophilus are commonly incorporated into fermented dairy products worldwide; among which yogurt is a popular delivery vehicle. To materialize most of the putative health benefits associated with probiotics, an adequate amount of viable cells must be delivered at the time of consumption. However, the loss in their viabilities during refrigerated storage has been demonstrated previously. This study focused on the effects of yogurt starter cultures on the survival of five strains of L. acidophilus, with emphases on low pH and acid production. Differential survival behavior between L. acidophilus strains was further analyzed. To this end, viable cell counts of L. acidophilus were determined weekly during 4 °C storage in various types of yogurts made with Streptococcus thermophilus alone, L. delbrueckii ssp. bulgaricus alone, both species of the starter cultures, or glucono-delta-lactone (GDL). All yogurt types, except for pasteurized yogurts, were co-fermented with L. acidophilus. Yogurt filtrate was analyzed for the presence of any inhibitory substance and for the amount of hydrogen peroxide. Multiplication of L. acidophilus was not affected by the starter cultures as all strains reached high level on day 0 of the storage period. Throughout the 28-day storage period, cell counts of L. acidophilus PIM703 and SBT2062 remained steady (~ 6 × 107 CFU/g) in yogurts made with both starter cultures, whereas those of ATCC 700396 and NCFM were reduced by a maximum of 3 and 4.6 logs, respectively. When starter cultures were replaced by GDL, all strains survived well, suggesting that a low pH was not a critical factor dictating their survival. In addition, the filtrate collected from yogurts made with starter cultures appeared to have higher inhibitory activities against L. acidophilus than that made with GDL. The presence of viable starter cultures was necessary to adversely affect the survival of some strains, as pasteurized yogurts had no effect on their survival. In particular, the inhibitory effect exerted by L. delbrueckii ssp. bulgaricus on L. acidophilus NCFM was highly pronounced than by S. thermophilus, nevertheless, the same effect was not observed on SBT2062. The inhibition against stationary-phase NCFM cells might be caused by the elevated level of hydrogen peroxide produced by L. delbrueckii ssp. bulgaricus. Delineating factors driving the differences in survival trait among probiotic strains will lead to a more efficacious delivery of health benefits in fermented dairy products through targeted technological interventions.  相似文献   

18.
高压二氧化碳处理对牛通脊颜色和肌红蛋白的影响   总被引:1,自引:0,他引:1  
在35℃、30min,不同压力(0、7、14、21、28、35MPa)和在35℃、21MPa,不同时间(0、10、20、30、40、50min)对牛通脊进行高压二氧化碳(HPCD)处理,测定肉的色泽和肌红蛋白(Mb)指标的变化。结果表明:HPCD处理能使肉由红色逐渐变成灰棕色,显著提高L*值(p<0.05)、降低a*值(p<0.01)。在35℃、30min条件下,7、14、21MPa的处理分别使L*值提高4.891、9.494、16.432;a*值降低1.575、3.573、5.872。同时,HPCD处理显著降低了肌红蛋白的总量(p<0.01),7~35MPa处理后分别降低了0.034、0.048、0.054、0.044、0.061mmol/L/L。另外,提高压力、延长时间也能显著降低高铁肌红蛋白(MetMb)比例(p<0.05),提高氧合肌红蛋白(MbO2)比例(p<0.01)。4℃冷藏7d后,与对照组相比,HPCD处理均能提高肌红蛋白的稳定性。该研究为HPCD技术在肉类中的应用提供理论参考。  相似文献   

19.
《Food microbiology》2000,17(2):225-232
Thermal inactivation of Salmonella typhimurium was studied under CO2pressures of 15, 30 and 60 atm at 25, 35 and 45°C. Two phases were observed in the destruction curves. The earlier stage was characterized by a slow rate of inactivation in the number of S. typhimurium, which increased sharply at the later stage. It was suggested that the cell death resulted from the lowered pH due to solubilization of CO2. An increase of pressure and/or temperature enhanced the antimicrobial effects of CO2. Salmonella typhimurium suspended in physiological saline (PS) was completely inactivated under 60 atm CO2treatment in 35 and 15 min at 25 and 35°C, respectively. On the other hand, it was completely inactivated when suspended in PS containing brain–heart infusion broth for 140 and 100 min. A minimum D -value was obtained under 60 atm CO2pressure at 45°C. Inactivation rates of S. typhimurium were sensitive to pressure, temperature, exposure time, initial number of cells, and the suspending medium.  相似文献   

20.
This experiment was conducted to investigate the effect of starter cultures on the physicochemical properties, texture, and consumer preferences of soft white cheese (SWC) made from camel (Camelus dromedarius) milk. The experiment was laid out in a completely randomized design with 5 treatments [starter cultures; i.e., 1 thermophilic (STI-12), 2 blended (RST-743 and XPL-2), and 2 mesophilic (R-707 and CHN-22) cultures]. Starter cultures STI-12 and RST-743 were inoculated at 37°C, whereas XPL-2, R-707, and CHN-22 were inoculated at 30°C. Camel milk inoculated using STI-12 and RST-743 cultures resulted in faster acidification than XPL-2, R-707, and CHN-22 cultures. Camel milk SWC made using STI-12 and CHN-22 cultures gave lower pH (4.54) and titratable acidity (0.59), respectively, whereas R-707 culture resulted in high cheese yield (13.44 g/100 g). In addition, high fat (20.91 g/100 g), protein (17.49 g/100 g), total solids (43.44 g/100 g), and ash (2.40 g/100 g) contents were recorded for SWC made from camel milk made using RST-743 culture. Instrumental analysis of cheese texture revealed differences in resistance to deformation in which camel milk SWC made using RST-743 culture gave higher firmness (3.20 N) and brittleness (3.12 N). However, no significant difference was observed among camel milk SWC adhesiveness made using different starter cultures. Consumer preference for appearance, aroma, taste, and overall acceptances of SWC were affected by inoculation of starter cultures. Considering curd firmness, cheese yield, compositional quality, and textures using STI-12, RST-743, and R-707, these cultures were found to be better for the manufacture of camel milk SWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号