首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

2.
Organic single crystals with much higher carrier mobility and stability compared to the amorphous organic materials have shown great potential in electronic and optoelectronic devices. However, their applications in white organic light‐emitting devices (WOLEDs), especially the three‐color‐strategy WOLEDs, have been hindered by the difficulties in fabricating complicated device structures. Here, double‐doped white‐emission organic single crystals are used as the active layers for the first time in the three‐color‐strategy WOLEDs by co‐doping the red and green dopants into blue host crystals. Precise control of the dopant concentration in the double‐doped crystals results in moderately partial energy transfer from the blue donor to the green and red dopants, and thereafter, simultaneous RGB emissions with balanced emission intensity. The highest color‐rendering index (CRI) and efficiency, to the best of the authors' knowledge, are obtained for the crystal‐based WOLEDs. The CRI of the WOLEDs varies between 80 and 89 with the increase of the driving current, and the luminance and current efficiency reach up to 793 cd m?2 and 0.89 cd A?1, respectively. The demonstration of the present three‐color organic single‐crystal‐based WOLED promotes the development of the single crystals in optoelectronics.  相似文献   

3.
By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate (FIrpic) for blue emission and bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium(acetylacetonate) ((fbi)2Ir(acac)) for orange emission, into a single‐energy well‐like emissive layer, an extremely high‐efficiency white organic light‐emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward‐viewing power efficiency of 42.5 lm W?1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A?1. Systematic studies of the dopants, host and dopant‐doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density–voltage characteristics, and temperature‐dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of FIrpic and (fbi)2Ir(acac) are, respectively, host–guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses. It is noteworthy that the introduction of the multifunctional orange dopant (fbi)2Ir(acac) (serving as either hole‐trapping site or electron‐transporting channel) is essential to this concept as it can make an improved charge balance and broaden the recombination zone. Based on this unique working model, detailed studies of the slight color‐shift in this WOLED are performed. It is quantitatively proven that the competition between hole trapping on orange‐dopant sites and undisturbed hole transport across the emissive layer is the actual reason. Furthermore, a calculation of the fraction of trapped holes on (fbi)2Ir(acac) sites with voltage shows that the hole‐trapping effect of the orange dopant is decreased with increasing drive voltage, leading to a reduction of orange emission.  相似文献   

4.
A simple one‐pot approach based on the “benzyl alcohol route” is used for the preparation of benzoate‐ and biphenolate‐capped zirconia and, benzoate‐capped Eu‐doped zirconia nanoparticles. Powder X‐ray diffraction studies and high‐ resolution transmission electron microscopy (HR‐TEM) showed that the nanoparticles present high crystallinity and uniform particle sizes ranging from 3 to 4 nm. FT‐IR and solid state NMR (SS‐NMR) studies revealed that the nanoparticles are coated with a large amount of organic species when the reaction temperature is above 300 °C. It was found that the alcohol used as solvent is oxidized at the surface of the nanoparticles to the respective carboxylic acid which acts as a stabilizer, controlling the nanoparticles growth. The optical properties of these hybrid nanoparticles were studied by room and low (12K) temperature photoluminescence spectroscopy, time‐resolved spectroscopy and absolute emission quantum yield. The as‐synthesized benzoate‐ and biphenolate‐capped nanoparticles exhibit interesting emission properties in the UV and blue spectral regions together with values of emission quantum yields much higher than those reported for zirconia nanoparticles of similar size. The photoluminescent properties were attributed to a cooperative effect of the capping ligands and the defects associated to the ZrO2 nanoparticles. Due to the overlapping of the various emission components involved (i.e., the emission of europium(III) intra‐4f6 transitions, defects in the zirconia and capping ligands) a tunable emission color ranging from purplish‐pink to greenish‐blue could be obtained for the europium‐doped zirconia nanoparticles by simply selecting different excitation wavelengths.  相似文献   

5.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

6.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

7.
Facile synthesis of white‐emitting, protein‐based, metal‐free, stable, nontoxic, and pH sensitive, advanced functional nanoparticles (GlowDots), as alternatives to quantum dots, is reported here. Controlled cross‐linking of bovine serum albumin resulted in facile formation of spherical nanoparticles of 35 nm in diameter with a sharp size distribution (±10 nm), which were then conjugated with specific dyes to produce white‐emitting particles with tunable excitation wavelengths. Chemical novelty is that the particle size, size distribution, stability, surface chemistry, and emission properties are under full chemical control where the size and absorption/emission properties are independently tuned. Up to 100 dye molecules were attached to each particle, on an average, and hence, particles acquired strong absorption cross‐sections as well as high brightness. White fluorescence of GlowDots is strongly sensitive to pH over a range of pH 2–11, and pH‐induced emission changes are fully reversible. The particles readily entered HeLa cells and emission color depended on particle location in the live cells, which is most likely due to the local environment surrounding the particles. These are the very first reports of white‐emitting advanced functional nanoparticles that are biodegradable, sensitive to pH, and amenable for live cell imaging to probe the subcellular compartments.  相似文献   

8.
An excellent hybrid III‐nitride/nanocrystal nanohole light‐emitting diode (h‐LED) has been developed utilizing nonradiative resonant energy transfer (NRET) between violet/blue emitting InGaN/GaN multiple quantum wells (MQWs) and various wavelength emitting nanocrystals (NCs) as color‐conversion mediums. InGaN/GaN MQWs are fabricated into nanoholes by soft nanoimprint lithography to minimize the separation between MQWs and NCs. A significant reduction in the decay lifetime of excitons in the MQWs of the hybrid structure has been observed as a result of the NRET from the nitride emitter to NCs. The NRET efficiency of the hybrid structures is obtained from the decay curves, as high as 80%. Moreover, a modified Förster formulation has exhibited that the exciton coupling distance in the hybrid structures is less than the Förster's radius, demonstrating a strong coupling between MQWs and NCs. Finally, based on a systemic optimization for white emission indexes, a series of hybrid ternary complementary color h‐LEDs have been demonstrated with a high color rendering index, up to 82, covering the white light emission at different correlated color temperatures ranging from 2629 to 6636 K, corresponding to warm white, natural white, and cold white.  相似文献   

9.
Organic molecules exhibiting afterglow emission (lifetime longer than 0.1 s) under ambient conditions have sparked tremendous attention in recent years as a sustainable energy source with potential applications in displays, lighting, and bioimaging. However, white afterglow organic materials with color purity during the entire period of delayed emission, after the cessation of excitation source, are yet to be achieved due to the different excited state lifetimes of its primary or complementary components. Herein, a remarkable, ambient “temporally pure white afterglow,” which lasts for over 7 s, by coorganizing complementary blue and greenish‐yellow organic room temperature phosphors with similar ultralong lifetimes and efficiency, in an amorphous polymer film is demonstrated. One of the most efficient blue afterglow room temperature phosphors is also reported, with an ultralong lifetime up to 2.26 s and maximum quantum efficiency of 36.8%, from purely organic triazatruxenes en route to the realization of this white afterglow. Further, broad and complementary absorption features of the coorganized phosphors in the visible region facilitates an excitation‐dependent dynamic color‐tuning of the afterglow from sky‐blue to greenish‐yellow.  相似文献   

10.
This study reveals the mechanism of the dual‐emission properties for asymmetrical diphenylsulfone and diphenylketone derivatives. A series of asymmetrical diphenylketone and diphenylsulfone derivatives with dual‐emission properties are designed and synthesized. By single crystal structure analyses, various photophysical studies, and 2D 1H–1H NOSEY NMR studies, the lower energy emission bands in the dual‐emission spectra are successfully assigned to hydrogen‐bonding‐assisted intermolecular charge transfer emission. The emission properties of these compounds can easily be tuned in both solid state and solution state by destroying or strengthening the intermolecular hydrogen bonding. In addition, thermally activated delayed fluorescence characteristics for the intermolecular charge transfer emissions are also observed. The control of the intermolecular and intramolecular charge transfers serves as the basis for the generation of the white‐light emission. For compound CPzPO, nearly pure white‐light emission with CIE coordinates of (0.31, 0.32) is easily achieved by precipitation from dichloromethane and hexane mixed solvent system. These results clearly give an insight into the dual‐emission properties and provide a rational strategy for the design and synthesis of single‐component white‐light‐emitting materials and mechanoresponsive light‐emitting materials.  相似文献   

11.
A series of blue (B), green (G) and red (R) light‐emitting, 9,9‐bis(4‐(2‐ethyl‐hexyloxy)phenyl)fluorene (PPF) based polymers containing a dibenzothiophene‐S,S‐dioxide (SO) unit (PPF‐SO polymer), with an additional benzothiadiazole (BT) unit (PPF‐SO‐BT polymer) or a 4,7‐di(4‐hexylthien‐2‐yl)‐benzothiadiazole (DHTBT) unit (PPF‐SO‐DHTBT polymer) are synthesized. These polymers exhibit high fluorescence yields and good thermal stability. Light‐emitting diodes (LEDs) using PPF‐SO25, PPF‐SO15‐BT1, and PPF‐SO15‐DHTBT1 as emission polymers have maximum efficiencies LEmax = 7.0, 17.6 and 6.1 cd A?1 with CIE coordinates (0.15, 0.17), (0.37, 0.56) and (0.62, 0.36), respectively. 1D distributed feedback lasers using PPF‐SO30 as the gain medium are demonstrated, with a wavelength tuning range 467 to 487 nm and low pump energy thresholds (≥18 nJ). Blending different ratios of B (PPF‐SO), G (PPF‐SO‐BT) and R (PPF‐SO‐DHTBT) polymers allows highly efficient white polymer light‐emitting diodes (WPLEDs) to be realized. The optimized devices have an attractive color temperature close to 4700 K and an excellent color rendering index (CRI) ≥90. They are relatively stable, with the emission color remaining almost unchanged when the current densities increase from 20 to 260 mA cm?2. The use of these polymers enables WPLEDs with a superior trade‐off between device efficiency, CRI, and color stability.  相似文献   

12.
An iridescent chameleon‐like material that can change its colors under different circumstances is always desired in color‐on‐demand applications. Herein, a strategy based on trichromacy and the dynamically tunable fluorescence resonance energy transfer (FRET) process to design and prepare these chameleon‐like fluorescent materials is proposed. A set of trichromic (red, green, and blue), solid fluorescent materials are synthesized by covalently attaching spiropyran, fluorescein, and pyrene onto cellulose chains independently. After simply mixing them together, a full range of color is realized. The chameleon‐like nature of these materials is based on the dynamic tunable FRET process between donors (green and blue) and acceptors (red) in which the energy transfer efficiency can be finely tuned by irradiation. Ultimately, the reversible and nonlinear regulation of fluorescence properties, including color and intensity, is achieved on a timescale recognizable by the naked eye. Benefited by the excellent processability inherited from the cellulose derivatives, the as‐prepared materials are feasibly transformed into different forms. Particularly, a fluorescent ink with the complicated fluorescent input–output dependence suggests more than a proof‐of‐concept; indeed, it suggests a unique method of information encryption, security printing, and dynamic anticounterfeiting.  相似文献   

13.
Organic optoelectronics calls for materials combining bright luminescence and efficient charge transport. The former is readily achieved in isolated molecules, while the latter requires strong molecular aggregation, which usually quenches luminescence. This hurdle is generally resolved by doping the host material with highly luminescent molecules collecting the excitation energy from the host. Here, a novel concept of molecular self‐doping is introduced in which a higher luminescent dopant emerges as a minute‐amount byproduct during the host material synthesis. As a one‐stage process, self‐doping is more advantageous than widely used external doping. The concept is proved on thiophene–phenylene cooligomers (TPCO) consisting of four (host) and six (dopant) conjugated rings. It is shown that <1% self‐doping doubles the photoluminescence in the TPCO single crystals, while not affecting much their charge transport properties. The Monte‐Carlo modeling of photoluminescence dynamics reveals that host–dopant energy transfer is controlled by both excitonic transport in the host and host–dopant Förster resonant energy transfer. The self‐doping concept is further broadened to a variety of conjugated oligomers synthesized via Suzuki, Kumada, and Stille crosscoupling reactions. It is concluded that self‐doping combined with improved excitonic transport and host–dopant energy transfer is a promising route to highly luminescent semiconducting organic single crystals for optoelectronics.  相似文献   

14.
The development of π‐conjugated molecular systems with high‐efficiency generation of UV and blue light plays an important role in the fields of light‐emitting diodes, fluorescent imaging, and information storage. Herein, supramolecular construction of solid‐state UV/blue luminescent materials are assembled using 2,5‐diphenyloxazole (DPO) with four typical co‐assembled building blocks (1,4‐diiodotetrafluorobenzene, 4‐bromotetrafluorobenzene carboxylic acid, pentafluorophenol, and octafluoronaphthalene). Compared with the pristine DPO sample, the as‐prepared two‐component molecular materials feature ease of crystallization, high crystallinity, enhanced thermal stability and tunable luminescence properties (such as emissive wavelength, color, fluorescence lifetime, and photoluminescence quantum yield) as well as multicolor polarized emission in the UV/blue region. Moreover, pump‐enhanced luminescence and reversible mechanochromic fluorescence (MCF) properties can also be obtained for these molecular solids, which are absent for the pristine DPO sample. Therefore, this work provides a procedure for the facile self‐assembly of ordered two‐component molecular materials with tunable UV/blue luminescence properties, which have potential application in the areas of light‐emitting displays, polarized emission, frequency doubling, and luminescent sensors.  相似文献   

15.
White light phosphors have many potential applications such as solid‐state lighting, full color displays, light source for plant growth, and crop improvement. However, most of these phosphors are rare‐earth‐based materials which are costly and would be facing the challenge of resource issue due to the extremely low abundance of these elements on earth. A new white color composite consisted of a graphitic‐phase nitrogen carbon (g‐C3N4) treated with nitric acid and copper‐cysteamine Cu3Cl(SR)2 is reported herein. Under a single wavelength excitation at 365 nm, these two materials show a strong blue and red luminescence, respectively. It is interesting to find that the white light emission with a quantum yield of 20% can be obtained by mixing these two self‐activated luminescent materials at the weight ratio of 1:1.67. Using a 365 nm near‐ultraviolet chip for excitation, the composite produces a white light‐emitting diode that exhibits an excellent color rendering index of 94.3. These white‐emitting materials are environment friendly, easy to synthesize, and cost‐effective. More importantly, this will potentially eliminate the challenge of rare earth resources. Furthermore, a single chip is used for excitation instead of a multichip, which can greatly reduce the cost of the devices.  相似文献   

16.
Two compounds, 2,3‐dicyano‐5,6‐di(4′‐diphenylamino‐biphenyl‐4‐yl)pyrazine (CAPP) and 6,7‐dicyano‐2,3‐di(4′‐diphenylamino‐biphenyl‐4‐yl)quinoxaline (CAPQ), capable of intramolecular charge transfer, have been designed and synthesized in high yield by a convenient procedure. The compounds have been fully characterized spectroscopically. They have a high thermal stability and show bright light emission both in non‐polar solvents and in the solid state. Moreover, they exhibit excellent reversible oxidation and reduction waves. The higher energy level of the highest occupied molecular orbital (–5.3 eV) and the triphenylamine group are advantageous for hole‐injection/transport. In addition, the high electron affinities of 3.4 eV and the observed reversible reductive process suggest that these compounds enhance electron injection and have potential for use in electron transport. Three types of non‐doped red‐light‐emitting diodes have been studied using CAPP and CAPQ as the electron‐transporting and host‐light‐emitting layers, respectively. The devices exhibit red electroluminescence (EL), and constant Commission Internationale de l'Eclairage coordinates have been observed on increasing the current density. Pure red EL of CAPP, with a maximum brightness of 536 cd m–2 and an external quantum efficiency of 0.7 % in ambient air, was achieved.  相似文献   

17.
Novel fluorene‐based blue‐light‐emitting copolymers with an ultraviolet‐blue‐light (UV‐blue‐light) emitting host and a blue‐light emitting component, 4‐N,N‐diphenylaminostilbene (DPS) have been designed and synthesized by using the palladium‐ catalyzed Suzuki coupling reaction. It was found that both copolymers poly [2,7‐(9,9‐dioctylfluorene)‐alt‐1,3‐(5‐carbazolphenylene)] (PFCz) DPS1 and PFCz‐DPS1‐OXD show pure blue‐light emission even with only 1 % DPS units because of the efficient energy transfer from the UV‐blue‐light emitting PFCz segments to the blue‐light‐emitting DPS units. Moreover, because of the efficient energy transfer/charge trapping in these copolymers, PFCz‐DPS1 and PFCz‐DPS1‐OXD show excellent device performance with a very stable pure blue‐light emission. By using a neutral surfactant poly[9,9‐bis(6'‐(diethanolamino)hexyl)‐fluorene] (PFN‐OH) as the electron injection layer, the device based on PFCz‐DPS1‐OXD5 with the configuration of ITO/PEDOT:PSS/PVK/polymer/PFN‐OH/Al showed a maximum quantum efficiency of 2.83 % and a maximum luminous efficiency of 2.50 cd A–1. Its CIE 1931 chromaticity coordinates of (0.156, 0.080) match very well with the NTSC standard blue pixel coordinates of (0.14, 0.08). These results indicate that this kind of dopant/host copolymer could be a promising candidate for blue‐light‐emitting polymers with high efficiency, good color purity, and excellent color stability.  相似文献   

18.
The authors have designed and synthesized a family of high‐performance inorganic–organic hybrid phosphor materials composed of extended and robust networks of one, two, and three dimensions. Following a bottom‐up solution‐based synthetic approach, these structures are constructed by connecting highly emissive Cu4I4 cubic clusters via carefully selected ligands that form strong Cu? N bonds. They emit intensive yellow‐orange light with high luminescence quantum efficiency, coupled with large Stokes shift, which greatly reduces self‐absorption. They also demonstrate exceptionally high framework‐ and photostability, comparable to those of commercial phosphors. The high stabilities are the result of significantly enhanced Cu? N bonds, as confirmed by the density functional theory (DFT) binding energy and electron density calculations. Possible emission mechanisms are analyzed based on the results of theoretical calculations and optical experiments. Two‐component white phosphors obtained by blending blue and yellow emitters reach an internal quantum yield as high as 82% and correlated color temperature as low as 2534 K. The performance level of this subfamily exceeds all other types of Cu–I based hybrid systems. The combined advantages make them excellent candidates as alternative rare‐earth element‐free phosphors for possible use in energy‐efficient lighting devices.  相似文献   

19.
Luminescent ferroelectrics have attracted considerable attention in terms of integrated photoelectronic devices, most of which are focused on the multicomponent systems of rare‐earth doping ferroelectric ceramics. However, bulk ferroelectricity with coexistence of strong white‐light emission, especially in the single‐component system, remains quite rare. Here, a new organic–inorganic hybrid ferroelectric of (C4H9NH3)2PbCl4 ( 1 ) is reported, adopting a 2D layered perovskite architecture, which exhibits an unprecedented coexistence of notable ferroelectricity and intrinsic white‐light emission. Decent above‐room‐temperature spontaneous polarization of ≈2.1 µC cm?2 is confirmed for 1 . Particularly, it also exhibits brilliant broadband white‐light emission with a high color‐rendering‐index up to 86 under UV excitation. Structural analyses indicate that ferroelectricity of 1 originates from molecular reorientation of dynamic organic cations, as well as significant structural distortion of PbCl6 octahedra that also contribute to its white‐light emission. This work paves an avenue to design new hybrid ferroelectrics for multifunctional application in the photoelectronic field.  相似文献   

20.
Two donor‐acceptor systems, 4,7‐di‐2‐thienyl‐2,1,3‐benzoselenadiazole (TSeT) and 4,7‐di‐2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl‐2,1,3‐benzoselenadiazole (ESeE) are synthesized and electropolymerized to give polymers PTSeT and PESeE, respectively. One of the polymers, PTSeT, is blue‐green in the neutral state and soluble, exhibiting a deep‐red emission color. The other, PESeE, is the first 2,1,3‐benzoselenadiazole‐based neutral state green polymer with a narrow bandgap (1.04 eV). Furthermore, PESeE has superior and durable n‐ and p‐doping processes. Beyond the stability and the robustness, both of the polymer films exhibit multi‐electrochromic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号