首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The effect of cooling rate on the composition, morphology, size, and volume fraction of the secondary phase in as‐cast Mg–Gd–Y–Zr alloy is investigated. In the study, a casting containing five steps with thickness of 10–50 mm is produced, in which cooling rate ranging from 2.6 to 11.0 K s?1 is created. The secondary phase is characterized using optical microscope (OM), scanning electron microscope (SEM), and electron probe micro‐analyzer (EPMA). The volume fraction of the secondary phase is determined using OM and quantitative metallographic analysis, and Vickers hardness test is conducted to verify the analysis results. The effect of the cooling rate on the volume fraction of the secondary phase is discussed in detail. The result shows that with the increase of the cooling rate, the size of the secondary phase decreases. The effect of the cooling rate on the volume fraction of the secondary phase is complicated somewhat. A comprehensive analysis on the experimental data shows that a critical cooling rate may exist, over which the volume fraction of the secondary phase decreases with the increase of the cooling rate, however under which the volume fraction increases with the increase of the cooling rate.
  相似文献   

5.
6.
The microstructure, mechanical properties and fracture behavior of gravity die cast Mg–4Y–2Nd–1Gd–0.4Zr (wt.%) (WNG421) alloy are studied at room temperature in different thermal conditions, including as-cast, solution-treated and different aging-treated (both isothermal and two-step aging) conditions. The results indicate that WNG421 alloy shows different behaviors of crack initiation and propagation in different thermal conditions during tensile test at room temperature. After pre-aged at 200 °C for 5 h, the hardness of WNG421 alloy first reduces and then increases when secondary aged at 250 °C (two-step aging). The peak hardness and corresponding tensile strength of the two-step aged alloy both increases compared with those in 250 °C isothermal peak-aged condition. Tensile strength of WNG421 alloy at room temperature in low temperature (200 °C) isothermal peak-aged condition is much higher than that in high temperature (250 °C) isothermal peak-aged condition.  相似文献   

7.
8.
9.
10.
11.
12.
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location‐oriented effects (LOE). The intestinal LOE confer a new biological‐effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano–mucus interaction, nano–intestinal epithelial cells (IECs) interaction, nano–immune interaction, and nano–microbiota interaction. A deep understanding of NM‐induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine‐related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.  相似文献   

13.
14.
15.
16.
17.
18.
19.
This paper presents a new algorithm to implement the Carpinteri–Spagnoli–Vantadori (CSV) multiaxial fatigue criterion for random loading and to shorten the computation time. This goal is achieved after calculating the exact expressions of stress spectral moments in every rotated plane, which allow the maximum variance and expected maximum peak of normal/shear stress to be computed directly. This permits the new algorithm to determine the five rotations of the critical plane without using ‘for/end’ loops (which represent a slow numerical operation), although some information on stress signals examined is lost. Two examples are presented to demonstrate the advantages of the new algorithm in comparison with its standard version, which are particularly remarkable when considering the stress output of all finite element model nodes. The approach behind the new algorithm can be extended to other multiaxial spectral criteria that use angular rotations or direction cosines to locate the critical plane or the direction of maximum stress variance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号