首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

2.
A narrow bandgap polymeric semiconductor, BOC‐PTDPP , comprising alkyl substituted diketopyrrolopyrrole (DPP) and tert‐butoxycarbonyl (t‐BOC)‐protected DPP, is synthesized and used in organic field‐effect transistors (OFETs). The polymer films are prepared by solution deposition and thermal annealing of precursors featuring thermally labile t‐BOC groups. The effects of the thermal cleavage on the molecular packing structure in the polymer thin films are investigated using thermogravimetric analysis (TGA), UV‐vis spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT‐IR) spectroscopy, and X‐ray diffraction (XRD) analysis. Upon utilization of solution‐shearing process, integrating the ambipolar BOC‐PTDPP into transistors shows p‐channel dominant characteristics, resulting in hole and electron mobilities as high as 1.32 × 10?2 cm2 V?1 s?1 and 2.63 × 10?3 cm2 V?1 s?1, which are about one order of magnitude higher than those of the drop‐cast films. Very intriguingly, the dominant polarity of charge carriers changes from positive to negative after the thermal cleavage of t‐BOC groups at 200 °C. The solution‐sheared films upon subsequent thermal treatment show superior electron mobility (μe = 4.60 × 10?2 cm2 V?1 s?1), while the hole mobility decreases by one order of magnitude (μh = 4.30 × 10?3 cm2 V?1 s?1). The inverter constructed with the combination of two identical ambipolar OFETs exhibits a gain of ~10. Reported here for the first time is a viable approach to selectively tune dominant polarity of charge carriers in solution‐processed ambipolar OFETs, which highlights the electronically tunable ambipolarity of thermocleavable polymer by simple thermal treatment.  相似文献   

3.
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells.  相似文献   

4.
Solution-processed thin film transistors can be implemented using simple and low cost fabrication, and are the best candidates for commercialization due to their application to a range of wearable electronics. We report an ambipolar charge injection interlayer that can improve both hole and electron injection in organic field-effect transistors (OFETs) with inexpensive source-drain electrodes. The solution processed ambipolar injection layer is fabricated by selective dispersion of semiconducting single walled carbon nanotubes using poly(9,9-dioctylfluorene). OFETs with molybdenum (Mo) contacts and interlayer (Mo/interlayer OFETs) exhibit superior performance, including higher hole and electron mobilities, device yield, lower threshold voltages, and lower trap densities than those of bare transistors. While OFETs with Mo contacts show unipolar p-type behaviour, Mo/interlayer OFETs display ambipolar transport due to significant enhancement of electron injection. In the p-type region, transistor performance is comparable to devices with gold (Au). Hole mobility is increased approximately ten-fold over devices with only Mo contacts. The electron mobility of Mo/interlayer OFETs is 0.05 cm2V−1s−1, which is higher than devices with Au electrodes. The p-type contact resistances of Mo/interlayer OFETs are half those of OFETs with Mo contacts. Trap density in Mo/interlayer OFETs is one order magnitude lower than that of pristine devices. We also demonstrate that this approach is extendible to other metals (nickel) and n-type semiconductors with different energy levels. Injection by tunnelling is suggested as the mechanism of ambipolar injection.  相似文献   

5.
In this paper, a technique using mixed transition‐metal oxides as contact interlayers to modulate both the electron‐ and hole‐injections in ambipolar organic field‐effect transistors (OFETs) is presented. The cesium carbonate (Cs2CO3) and vanadium pentoixide (V2O5) are found to greatly and independently improve the charge injection properties for electrons and holes in the ambipolar OFETs using organic semiconductor of diketopyrrolopyrrolethieno[3,2‐b]thiophene copolymer (DPPT‐TT) and contact electrodes of molybdenum (Mo). When Cs2CO3 and V2O5 are blended at various mixing ratios, they are observed to very finely and constantly regulate the Mo's work function from ?4.2 eV to ?4.8 eV, leading to high electron‐ and hole‐mobilities as high as 2.6 and 2.98 cm2 V?1 s?1, respectively. The most remarkable finding is that the device characteristics and device performance can be gradually controlled by adjusting the composition of mixed‐oxide interlayers, which is highly desired for such applications as complementary circuitry that requires well matched n‐channel and p‐channel device operations. Therefore, such simple interface engineering in conjunction with utilization of ambipolar semiconductors can truly enable the promising low‐cost and soft organic electronics for extensive applications.  相似文献   

6.
Controlling the interfacial properties between the electrode and active layer in organic field‐effect transistors (OFETs) can significantly affect their contact properties, resulting in improvements in device performance. However, it is difficult to apply to top‐contact‐structured OFETs (one of the most useful device structures) because of serious damage to the organic active layer by exposing solvent. Here, a spontaneously controlled approach is explored for optimizing the interface between the top‐contacted source/drain electrode and the polymer active layer to improve the contact resistance (RC). To achieve this goal, a small amount of interface‐functionalizing species is blended with the p‐type polymer semiconductor and functionalized at the interface region at once through a thermal process. The RC values dramatically decrease after introduction of the interfacial functionalization to 15.9 kΩ cm, compared to the 113.4 kΩ cm for the pristine case. In addition, the average field‐effect mobilities of the OFET devices increase more than three times, to a maximum value of 0.25 cm2 V?1 s?1 compared to the pristine case (0.041 cm2 V?1 s?1), and the threshold voltages also converge to zero. This study overcomes all the shortcomings observed in the existing results related to controlling the interface of top‐contact OFETs by solving the discomfort of the interface optimization process.  相似文献   

7.
Conjugated polymer semiconductors P1 and P2 with bithienopyrroledione (bi‐TPD) as acceptor unit are synthesized. Their transistor and photovoltaic performances are investigated. Both polymers display high and balanced ambipolar transport behaviors in thin‐film transistors. P1‐ based devices show an electron mobility of 1.02 cm2 V?1 s?1 and a hole mobility of 0.33 cm2 V?1 s?1, one of the highest performance reported for ambipolar polymer transistors. The electron and hole mobilities of P2 transistors are 0.36 and 0.16 cm2 V?1 s?1, respectively. The solar cells with PC71BM as the electron acceptor and P1/P2 as the donor exhibit a high V oc about 1.0 V, and a power conversion efficiency of 6.46% is observed for P1‐ based devices without any additives and/or post treatment. The high performance of P1 and P2 is attributed to their crystalline films and short π–π stacking distance (<3.5 Å). These results demonstrate (1) bi‐TPD is an excellent versatile electron‐deficient unit for polymer semiconductors and (2) bi‐TPD‐based polymer semiconductors have potential applications in organic transistors and organic solar cells.  相似文献   

8.
Fine‐tuning of the charge carrier polarity in organic transistors is an important step toward high‐performance organic complementary circuits and related devices. Here, three new semiconducting polymers, namely, pDPF‐DTF2, pDPSe‐DTF2, and pDPPy‐DTF2, are designed and synthesized using furan, selenophene, and pyridine flanking group‐based diketopyrrolopyrrole cores, respectively. Upon evaluating their electrical properties in transistor devices, the best performance has been achieved for pDPSe‐DTF2 with the highest and average hole mobility of 1.51 and 1.22 cm2 V?1 s?1, respectively. Most intriguingly, a clear charge‐carrier‐polarity change is observed when the devices are measured under vacuum. The pDPF‐DTF2 polymer exhibits a balanced ambipolar performance with the µh/µe ratio of 1.9, whereas pDPSe‐DTF2 exhibits p‐type dominated charge carrier transport properties with the µh/µe ratio of 26.7. Such a charge carrier transport change is due to the strong electron‐donating nature of the selenophene. Furthermore, pDPPy‐DTF2 with electron‐withdrawing pyridine flanking units demonstrates unipolar n‐type charge transport properties with an electron mobility as high as 0.20 cm2 V?1 s?1. Overall, this study demonstrates a simple yet effective approach to switch the charge carrier polarity in transistors by varying the electron affinity of flanking groups of the diketopyrrolopyrrole unit.  相似文献   

9.
Alkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b ]fluorene‐6,12‐dione ( IFD )‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10?7 cm2 V?1 s?1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V?1 s?1 by replacing the butyl units with dibutylamino groups ( DBA‐IFD ), while the butylthio‐modified IFD ( BT‐IFD ) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V?1 s?1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors.  相似文献   

10.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

11.
Solution‐processed small‐molecule bulk heterojunction (BHJ) ambipolar organic thin‐film transistors are fabricated based on a combination of [2‐phenylbenzo[d,d']thieno[3,2‐b;4,5‐b']dithiophene (P‐BTDT) : 2‐(4‐n‐octylphenyl)benzo[d,d ']thieno[3,2‐b;4,5‐b']dithiophene (OP‐BTDT)] and C60. Treating high electrical performance vacuum‐deposited P‐BTDT organic semiconductors with a newly developed solution‐processed organic semiconductor material, OP‐BTDT, in an optimized ratio yields a solution‐processed p‐channel organic semiconductor blend with carrier mobility as high as 0.65 cm2 V?1 s?1. An optimized blending of P‐BTDT:OP‐BTDT with the n‐channel semiconductor, C60, results in a BHJ ambipolar transistor with balanced carrier mobilities for holes and electrons of 0.03 and 0.02 cm2 V?1 s?1, respectively. Furthermore, a complementary‐like inverter composed of two ambipolar thin‐film transistors is demonstrated, which achieves a gain of 115.  相似文献   

12.
Systematic creation of polymeric semiconductors from novel building blocks is critical for improving charge transport properties in organic field‐effect transistors (OFETs). A series of ultralow‐bandgap polymers containing thienoisoindigo (TIIG) as a thiophene analogue of isoindigo (IIG) is synthesized. The UV‐Vis absorptions of the TIIG‐based polymers ( PTIIG‐T , PTIIG‐Se , and PTIIG‐DT ) exhibit broad bands covering the visible to near‐infrared range of up to 1600 nm. All the polymers exhibit unipolar p‐channel operations with regard to gold contacts. PTIIG‐DT with centrosymmetric donor exhibits a maximum mobility of 0.20 cm2 V?1 s?1 under gold contacts, which is higher than those of the other polymers containing axisymmetric donors. Intriguingly, OFETs fabricated with aluminum electrodes show ambipolar charge transport with hole and electron mobilities of up to 0.28 ( PTIIG‐DT ) and 0.03 ( PTIIG‐T ) cm2 V?1 s?1, respectively. This is a record value for the hitherto reported TIIG‐based OFETs. The finding demonstrates that TIIG‐based polymers can potentially function as either unipolar or ambipolar semiconductors without reliance on the degree of electron affinity of the co‐monomers.  相似文献   

13.
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications.  相似文献   

14.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

15.
We report on high-mobility top-gate organic field-effect transistors (OFETs) and complementary-like inverters fabricated with a solution-processed molecular bis(naphthalene diimide)-dithienopyrrole derivative as the channel semiconductor and a CYTOP/Al2O3 bilayer as the gate dielectric. The OFETs showed ambipolar behavior with average electron and hole mobility values of 1.2 and 0.01 cm2 V?1 s?1, respectively. Complementary-like inverters fabricated with two ambipolar OFETs showed hysteresis-free voltage transfer characteristics with negligible variations of switching threshold voltages and yielded very high DC gain values of more than 90 V/V (up to 122 V/V) at a supply voltage of 25 V.  相似文献   

16.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

17.
Polymer dielectrics with intrinsic mechanical flexibility are considered as a key component for flexible organic field‐effect transistors (OFETs). However, it remains a challenge to fabricate highly aligned organic semiconductor single crystal (OSSC) arrays on the polymer dielectrics. Herein, for the first time, a facile and universal strategy, polar surface‐confined crystallization (PSCC), is proposed to grow highly aligned OSSC arrays on poly(4‐vinylphenol) (PVP) dielectric layer. The surface polarity of PVP is altered periodically with oxygen‐plasma treatment, enabling the preferential nucleation of organic crystals on the strong‐polarity regions. Moreover, a geometrical confinement effect of the patterned regions can also prevent multiple nucleation and misaligned molecular packing, enabling the highly aligned growth of OSSC arrays with uniform morphology and unitary crystallographic orientation. Using 2,7‐dioctyl[1]benzothieno[3,2‐b]benzothiophene (C8‐BTBT) as an example, highly aligned C8‐BTBT single crystal arrays with uniform molecular packing and crystal orientation are successfully fabricated on the PVP layer, which can guarantee their uniform electrical properties. OFETs made from the C8‐BTBT single crystal arrays on flexible substrates exhibit a mobility as high as 2.25 cm2 V?1 s?1, which has surpassed the C8‐BTBT polycrystalline film‐based flexible devices. This work paves the way toward the fabrication of highly aligned OSSCs on polymer dielectrics for high‐performance, flexible organic devices.  相似文献   

18.
As a characteristic feature of conventional conjugated polymers, it has been generally agreed that conjugated polymers exhibit either high hole transport property (p‐type) or high electron transport property (n‐type). Although ambipolar properties have been demonstrated from specially designed conjugated polymers, only a few examples have exhibited ambipolar transport properties under limited conditions. Furthermore, there is, as yet, no example with ‘equivalent’ hole and electron transport properties. We describe the realization of an equivalent ambipolar organic field‐effect transistor (FET) by using a single‐component visible–near infrared absorbing diketopyrrolopyrrole (DPP)‐benzothiadiazole (BTZ) copolymer, namely poly[3,6‐dithiene‐2‐yl‐2,5‐di(2‐decyltetradecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5’,5’’‐diyl‐alt‐benzo‐2,1, 3‐thiadiazol‐4,7‐diyl] ( PDTDPP‐alt‐BTZ ). PDTDPP‐alt‐BTZ shows not only ideally balanced charge carrier mobilities for both electrons (?e = 0.09 cm2V?1s?1) and holes (?h = 0.1 cm2V?1s?1) but also its inverter constructed with the combination of two identical ambipolar FETs exhibits a gain of ~35 that is much higher than usually obtained values for unipolar logic.  相似文献   

19.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

20.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号