首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polymeric semiconductors have demonstrated great potential in the mass production of low‐cost, lightweight, flexible, and stretchable electronic devices, making them very attractive for commercial applications. Over the past three decades, remarkable progress has been made in donor–acceptor (D–A) polymer‐based field‐effect transistors, with their charge‐carrier mobility exceeding 10 cm2 V?1 s?1. Numerous molecular designs of D–A polymers have emerged and evolved along with progress in understanding the charge transport physics behind their high mobility. In this review, the current understanding of charge transport in polymeric semiconductors is covered along with significant features observed in high‐mobility D–A polymers, with a particular focus on polymeric microstructures. Subsequently, emerging molecular designs with further prospective improvements in charge‐carrier mobility are described. Moreover, the current issues and outlook for future generations of polymeric semiconductors are discussed.  相似文献   

3.
4.
Three acceptor–acceptor (A–A) type conjugated polymers based on isoindigo and naphthalene diimide/perylene diimide are designed and synthesized to study the effects of building blocks and alkyl chains on the polymer properties and performance of all‐polymer photoresponse devices. Variation of the building blocks and alkyl chains can influence the thermal, optical, and electrochemical properties of the polymers, as indicated by thermogravimetric analysis, differential scanning calorimetry, UV–vis, cyclic voltammetry, and density functional theory calculations. Based on the A–A type conjugated polymers, the most efficient all‐polymer photovoltaic cells are achieved with an efficiency of 2.68%, and the first all‐polymer photodetectors are constructed with high responsivity (0.12 A W?1) and detectivity (1.2 × 1012 Jones), comparable to those of the best fullerene based organic photodetectors and inorganic photodetectors. Photoluminescence spectra, charge transport properties, and morphology of blend films are investigated to elucidate the influence of polymeric structures on device performances. This contribution demonstrates a strategy of systematically tuning the polymeric structures to achieve high performance all‐polymer photoresponse devices.  相似文献   

5.
Two donor‐π‐acceptor (D‐π‐A) dyes are synthesized for application in dye‐sensitized solar cells (DSSC). These D‐π‐A sensitizers use triphenylamine as donor, oligothiophene as both donor and π‐bridge, and benzothiadiazole (BTDA)/cyanoacrylic acid as acceptor that can be anchored to the TiO2 surface. Tuning of the optical and electrochemical properties is observed by the insertion of a phenyl ring between the BTDA and cyanoacrylic acid acceptor units. Density functional theory (DFT) calculations of these sensitizers provide further insight into the molecular geometry and the impact of the additional phenyl group on the photophysical and photovoltaic performance. These dyes are investigated as sensitizers in liquid‐electrolyte‐based dye‐sensitized solar cells. The insertion of an additional phenyl ring shows significant influence on the solar cells' performance leading to an over 6.5 times higher efficiency (η = 8.21%) in DSSCs compared to the sensitizer without phenyl unit (η = 1.24%). Photophysical investigations reveal that the insertion of the phenyl ring blocks the back electron transfer of the charge separated state, thus slowing down recombination processes by over 5 times, while maintaining efficient electron injection from the excited dye into the TiO2‐photoanode.  相似文献   

6.
Conductive polymers largely derive their electronic functionality from chemical doping, processes by which redox and charge‐transfer reactions form mobile carriers. While decades of research have demonstrated fundamentally new technologies that merge the unique functionality of these materials with the chemical versatility of macromolecules, doping and the resultant material properties are not ideal for many applications. Here, it is demonstrated that open‐shell conjugated polymers comprised of alternating cyclopentadithiophene and thiadiazoloquinoxaline units can achieve high electrical conductivities in their native “undoped” form. Spectroscopic, electrochemical, electron paramagnetic resonance, and magnetic susceptibility measurements demonstrate that this donor–acceptor architecture promotes very narrow bandgaps, strong electronic correlations, high‐spin ground states, and long‐range π‐delocalization. A comparative study of structural variants and processing methodologies demonstrates that the conductivity can be tuned up to 8.18 S cm?1. This exceeds other neutral narrow bandgap conjugated polymers, many doped polymers, radical conductors, and is comparable to commercial grades of poly(styrene‐sulfonate)‐doped poly(3,4‐ethylenedioxythiophene). X‐ray and morphological studies trace the high conductivity to rigid backbone conformations emanating from strong π‐interactions and long‐range ordered structures formed through self‐organization that lead to a network of delocalized open‐shell sites in electronic communication. The results offer a new platform for the transport of charge in molecular systems.  相似文献   

7.
Activatable second near‐infrared window (NIR‐II; 1.0–1.7 µm) fluorescence probes that uncage deep‐tissue penetrating fluorescence by disease‐related biomarker stimuli hold great promise for detecting diseases with a poor understanding of the pathology at the molecular level with unprecedented resolution. However, currently, very few activatable NIR‐II fluorescence probes are reported mainly due to the lack of a simple yet general design strategy. Herein, a new and fairly generic design strategy using a bio‐erasable intermolecular donor–acceptor interaction to construct activatable NIR‐II fluorescence probes is reported. An organic semiconducting nanoprobe (SPNP) is constructed through blending a biomarker‐sensitive organic semiconducting non‐fullerene acceptor (3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐cyclopentane‐1,3‐dione‐[c]thiophen))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2',3'‐d']‐s‐indaceno[1,2‐b:5,6‐b'] dithiophene) (ITTC) (one of electric acceptors in organic solar cells) with a biomarker‐inert semiconducting polymer donor 5‐(4,8‐bis((2‐ethylhexyl)oxy)‐6‐methylbenzo[1,2‐b:4,5‐b']difuran‐2‐yl)‐10‐methylnaphtho[1,2‐c:5,6‐c']bis([1,2,5]thiadiazole) (PDF) in an amphiphilic‐polymer‐coated single nanoparticle to suppress NIR‐II fluorescence of the donor via a intermolecular donor–acceptor interaction. The acceptor ITTC is found to be specifically degraded by hypochlorite (an important biomarker) to erase its acceptor property, thus erasing the intermolecular donor–acceptor interaction and uncaging NIR‐II fluorescence. Consequently, SPNP exhibits a 17.5‐fold higher fluorescence brightness in the hypochlorite‐abnormal inflammation in vivo than in normal tissues. Our bio‐erasable intermolecular donor–acceptor interaction strategy provides simple yet general guidelines to design various biomarker‐activatable NIR‐II fluorescence probes.  相似文献   

8.
The synthesis of acceptor–donor–acceptor (A–D–A) molecules based on a septithiophene chain with terminal electron acceptor groups is reported. Using a dicyanovinyl‐ (DCV) substituted molecule as reference, another symmetrical A–D–A donor containing thiobarbituric (TB) groups is synthesized and these two acceptor groups are combined to produce the unsymmetrical A–D–A′ compound. The electronic properties of the donors are analyzed by cyclic voltammetry and UV‐Vis absorption spectroscopy and their photovoltaic properties are characterized on bilayer planar heterojunction cells that include spun‐cast donor films and vacuum‐deposited C60 as acceptor. Optical and electrochemical data show that replacement of DCV by TB leads to a small increase of the HOMO level and to a larger decrease of the LUMO, which result in a reduced band‐gap. The desymmetrized compound presents the lowest oxidation potential in solution but the highest oxidation onset in the solid state, which leads to a significant increase of the open‐circuit voltage of the resulting solar cells.  相似文献   

9.
Most of the high‐performance all‐polymer solar cells (all‐PSCs) reported to date are based on polymer donor and polymer acceptor pairs with largely overlapped light absorption properties, which seriously limits the efficiency of all‐PSCs. This study reports the development of a series of random copolymer donors possessing complementary light absorption with the naphthalenediimide‐based polymer acceptor P(NDI2HD‐T2) for highly efficient all‐PSCs. By controlling the molar ratio of the electron‐rich benzodithiophene (BDTT) and electron‐deficient fluorinated‐thienothiophene (TT‐F) units, a series of polymer donors with BDTT:TT‐F ratios of 1:1 (P1), 3:1 (P2), 5:1 (P3), and 7:1 (P4) are prepared. The synthetic control of polymer composition allows for precise tuning of the light absorption properties of these new polymer donors, enabling optimization of light absorption properties to complement those of the P(NDI2HD‐T2) acceptor. Copolymer P1 is found to be the optimal polymer donor for the fullerene‐based solar cells due to its high light absorption, whereas the highest power conversion efficiency of 6.81% is achieved for the all‐PSCs with P3, which has the most complementary light absorption with P(NDI2HD‐T2).  相似文献   

10.
11.
High‐performance unipolar n‐type conjugated polymers (CPs) are critical for the development of organic electronics. In the current paper, four “weak donor–strong acceptor” n‐type CPs based on pyridine flanked diketopyrrolopyrrole (PyDPP), namely PPyDPP1‐4FBT, PPyDPP2‐4FBT, PPyDPP1‐4FTVT, and PPyDPP2‐4FTVT, are synthesized via direct arylation polycondensation by using 3,3′,4,4′‐tetrafluoro‐2,2′‐bithiophene (4FBT) or (E)‐1,2‐bis(3,4‐difluorothien‐2‐yl)ethene (4FTVT) as weak donor unit. All four polymers exhibit low‐lying highest occupied molecular orbital (≈ ?5.90 eV) and lowest unoccupied molecular orbital energy levels (≈ ?3.70 eV). Top‐gate/bottom‐contact organic field‐effect transistors based on all four polymers display unipolar n‐channel characteristics with electron mobility (µe) above 1 cm2 V?1 s?1 in air, and presented linear |ISD|1/2 ?VGS plots and weak dependence of the extracted moblity on gate voltage (VGS), indicative of the reliability of the extracted mobility values. Importantly, the devices based on PPyDPP1‐4FBT and PPyDPP2‐4FBT show a pure unipolar n‐channel transistor behavior as revealed by the typical unipolar n‐channel output characteristics and clear off‐regimes in transfer characteristics. Attributed to its high crystallinity and favorable thin film morphology, PPyDPP2‐4FBT shows the highest µe of 2.45 cm2 V?1 s?1, which is among the highest for unipolar n‐type CPs reported to date. This is also the first report for DPP based pure n‐type CPs with µe greater than 1 cm2 V?1 s?1.  相似文献   

12.
Realization of commercial RGB‐based polymer electrochromic‐device applications can only be achieved by processable materials that possess three complementary colors in the reduced state and are transparent in the oxidized state. This report highlights the synthesis of the first processable green polymer with a transmissive oxidized state. The polymer revealed superior optical contrast in the visible region with fast switching times and robust stability. Hence, this material is the outstanding candidate for completion of RGB color space through commercial polymeric electrochromics.  相似文献   

13.
Semiconducting donor–acceptor (D–A) polymers have attracted considerable attention toward the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications. Here, polydiketopyrrolopyrrole (PDPP)‐based D–A polymers with varied alkyl side‐chain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (Tg) with increasing side‐chain length, which is further verified through coarse‐grained molecular dynamics simulations. Informed from experimental results, a mass‐per‐flexible bond model is developed to capture such observation through a linear correlation between Tg and polymer chain flexibility. Using this model, a wide range of backbone Tg over 80 °C and elastic modulus over 400 MPa can be predicted for PDPP‐based polymers. This study highlights the important role of side‐chain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predict Tg and elastic modulus of future new D–A polymers.  相似文献   

14.
15.
16.
Distinguishing structural isomers is a critical and challenging task for biotechnology, chemical industry, and environmental monitoring. Approaches currently available are limited in terms of selectivity and simplicity. In this paper, a highly sensitive organic field‐effect transistor (OFET) using the cyclopentadithiophene‐benzothiadiazole (CDT‐BTZ) copolymers as a semiconductor is presented for easy and selective detection of different families of structural isomers, as well as between different isomers within each family. High accuracy discrimination is achieved over a range of concentrations using only a single sensing parameter derived from the OFET characteristic transfer curve. As a reference, other homopolymer‐ and donor–acceptor copolymer‐based OFET sensors are examined but do not have an equivalent sensing performance to that of the CDT‐BTZ‐based OFETs. Investigating the link between isomer absorption and swelling, supramolecular order and energy levels of the active layer reveals a unique effect of each isomer on the energy bands of the semiconducting polymer.  相似文献   

17.
Two angular‐shaped 4,9‐didodecyl α‐aNDT and 4,9‐didodecyl β‐aNDT isomeric structures have been regiospecifically designed and synthesized. The distannylated α‐aNDT and β‐aNDT monomers are copolymerized with the Br‐DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PαNDTDTNT and PβNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric α‐aNDT and β‐aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations show that PαNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PβNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular π–π interactions, resulting in more redshifted absorption spectra of PαNDTDTNT in both solution and thin film compared to the PβNDTDTNT counterpart. 2D wide‐angle X‐ray diffraction analysis reveals that PαNDTDTNT has more ordered π‐stacking and lamellar stacking than PβNDTDTNT as a result of the lesser curvature of the PαNDTDTNT backbone. Consistently, PαNDTDTNT exhibits a greater field effect transistor hole mobility of 0.214 cm2 V?1 s?1 than PβNDTDTNT with a mobility of 0.038 cm2 V?1 s?1. More significantly, the solar cell device incorporating the PαNDTDTNT:PC71BM blend delivers a superior power conversion efficiency (PCE) of 8.01% that outperforms the PβNDTDTNT:PC71BM‐based device with a moderate PCE of 3.6%.  相似文献   

18.
19.
Unipolar n‐type semiconducting polymers based on the benzobisthiadiazole (BBT) unit and its heteroatom‐substituted derivatives are for the first time synthesized by the D‐A1‐D‐A2 polymer‐backbone design strategy. Selenium (Se) substitution is a very effective molecular design, but it has been seldom studied in n‐type polymers. In this study, within the similar conjugated framework, the Se substitution effects on the optical, electrochemical, solid‐state polymer packing, electron mobility, and air‐stability of the target unipolar n‐type polymers are unraveled. Replacing the sulfur (S) atom in the thiadiazole heterocycles with the Se atom leads to narrower bandgaps and deeper lowest unoccupied molecular orbital (LUMO) levels of the n‐type polymers. Furthermore, the Se‐substituted polymer (pSeN‐NDI) shows shorter lamellar packing distances and stronger edge‐on π–π stacking interactions than its S‐counterpart (pSN‐NDI), as observed by the two‐dimensional grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) patterns. With the deeper LUMO level and thin‐film microstructures suitable for transistors, pSeN‐NDI exhibits four‐fold higher electron mobilities (μe) than pSN‐NDI. However, the other Se‐containing polymer, pSeS‐NDI, forms rather amorphous film structures, which is caused by its limited thermal stability and decomposition during the thermal annealing processes, thus giving rise to a lower μe than its S‐counterpart (pBBT‐NDI). Most importantly, pBBT‐NDI demonstrates an electron mobility of 0.039 cm2 V?1 s?1, which is noticeable among the unipolar n‐type polymers based on the BBT and its analogs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号