首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is demonstrated that electric transport in Bi‐deficient Bi1‐δFeO3 ferroelectric thin films, which act as a p‐type semiconductor, can be continuously and reversibly controlled by manipulating ferroelectric domains. Ferroelectric domain configuration is modified by applying a weak voltage stress to Pt/Bi1‐δFeO3/SrRuO3 thin‐film capacitors. This results in diode behavior in macroscopic charge‐transport properties as well as shrinkage of polarization‐voltage hysteresis loops. The forward current density depends on the voltage stress time controlling the domain configuration in the Bi1‐δFeO3 film. Piezoresponse force microscopy shows that the density of head‐to‐head/tail‐to‐tail unpenetrating local domains created by the voltage stress is directly related to the continuous modification of the charge transport and the diode effect. The control of charge transport is discussed in conjunction with polarization‐dependent interfacial barriers and charge trapping at the non‐neutral domain walls of unpenetrating tail‐to‐tail domains. Because domain walls in Bi1‐δFeO3 act as local conducting paths for charge transport, the domain‐wall‐mediated charge transport can be extended to ferroelectric resistive nonvolatile memories and nanochannel field‐effect transistors with high performances conceptually.  相似文献   

2.
Dielectric energy‐storage capacitors have received increasing attention in recent years due to the advantages of high voltage, high power density, and fast charge/discharge rates. Here, a new environment‐friendly 0.76NaNbO3–0.24(Bi0.5Na0.5)TiO3 relaxor antiferroelectric (AFE) bulk ceramic is studied, where local orthorhombic Pnma symmetry (R phase) and nanodomains are observed based on high‐resolution transmission electron microscopy, selected area electron diffraction, and in/ex situ synchrotron X‐ray diffraction. The orthorhombic AFE R phase and relaxor characteristics synergistically contribute to the record‐high energy‐storage density Wrec of ≈12.2 J cm?3 and acceptable energy efficiency η ≈ 69% at 68 kV mm?1, showing great advantages over currently reported bulk dielectric ceramics. In comparison with normal AFEs, the existence of large random fields in the relaxor AFE matrix and intrinsically high breakdown strength of NaNbO3‐based compositions are thought to be responsible for the observed energy‐storage performances. Together with the good thermal stability of Wrec (>7.4 J cm?3) and η (>73%) values at 45 kV mm?1 up to temperature of 200 °C, it is demonstrated that NaNbO3‐based relaxor AFE ceramics will be potential lead‐free dielectric materials for next‐generation pulsed power capacitor applications.  相似文献   

3.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1?xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications.  相似文献   

4.
Perovskite‐like NaNbO3‐Bi1/3NbO3 solid solutions are studied to understand the interactions between octahedral rotations, which dominate the structural behavior of NaNbO3 and displacive disorder of Bi present in Bi1/3NbO3. Models of instantaneous structures for representative compositions are obtained by refining atomic coordinates against X‐ray total scattering and extended X‐ray‐absorption fine structure data, with additional input obtained from transmission electron microscopy. A mixture of distinct cations and vacancies on the cuboctahedral A‐sites in Na1?3xBixNbO3 (x ≤ 0.2) results in 3D nanoscale modulations of structural distortions. This phenomenon is determined by the inevitable correlations in the chemical composition of adjacent unit cells according to the structure type—an intrinsic property of any nonmolecular crystals. Octahedral rotations become suppressed as x increases. Out‐of‐phase rotations vanish for x > 0.1, whereas in‐phase tilts persist up to x = 0.2, although for this composition their correlation length becomes limited to the nanoscale. The loss of out‐of‐phase tilting is accompanied by qualitative changes in the probability density distributions for Bi and Nb, with both species becoming disordered over loci offset from the centers of their respective oxygen cages. Symmetry arguments are used to attribute this effect to different strengths of the coupling between the cation displacements and out‐of‐phase versus in‐phase rotations. The displacive disorder of Bi and Nb combined with nanoscale clustering of lattice distortions are primarily responsible for the anomalous broadening of the temperature dependence of the dielectric constant.  相似文献   

5.
Point defects such as oxygen vacancies and protonic interstitials are not only essential for ionic conductivity in oxides since they also affect the mechanical and electromechanical properties. These properties of nominally dry and hydrated proton-conducting BaZr0.85M0.15O2.925+δH (M = Al, Ga, Sc, In, Y, Eu) ceramics are investigated. Doping decreases Young's modulus with increasing ionic radii difference between the dopant and the host. Nominally dry samples show consistently higher Young's moduli than hydrated samples. All samples exhibit large non-classical electrostriction, with a negative electrostriction coefficient M33<0. M33 shows saturation with the field and a non-ideal Debye relaxation with frequency. The low-frequency M33 value for both dry and hydrated samples shows a similar dependence on dopant radius as Young's modulus. For the hydrated samples, the relaxation frequency increases by a factor >100 in the series Ga-Y, emphasizing the importance of proton trapping, with Y-doped samples having minimal trapping energy. This coincides with the fact that the saturation strain for Y-doped samples is also the smallest. In light of these findings, it is concluded that the present data give strong evidence for the existence of defect-related elastic dipoles in acceptor doped barium zirconate and that the non-classical electrostriction originates in their reorientation under electric field.  相似文献   

6.
The Bi2Te3?xSex family has constituted n‐type state‐of‐the‐art thermoelectric materials near room temperature (RT) for more than half a century, which dominates the active cooling and novel heat harvesting application near RT. However, the drawbacks of a brittle nature and Te‐content restricts the possibility for exploring potential applications. Here, it is shown that the Mg3+δSbxBi2?x family ((ZT)avg = 1.05) could be a promising substitute for the Bi2Te3?xSex family ((ZT)avg = 0.9–1.0) in the temperature range of 50–250 °C based on the comparable thermoelectric performance through a synergistic effect from the tunable bandgap using the alloy effect and the suppressible Mg‐vacancy formation using an interstitial Mn dopant. The former is to shift the optimal thermoelectric performance to near RT, and the latter is helpful to partially decouple the electrical transport and thermal transport in order to get an optimal RT power factor. The positive temperature dependence of the bandgap suggests this family is also a superior medium‐temperature thermoelectric material for the significantly suppressed bipolar effect. Furthermore, a two times higher mechanical toughness, compared with the Bi2Te3?xSex family, allows for a promising substitute for state‐of‐the‐art n‐type thermoelectric materials near RT.  相似文献   

7.
The development of long‐lasting zirconia‐based ceramics for implants, which are not prone to hydrothermal aging, is not satisfactorily solved. Therefore, this study is conceived as an overall evaluation screening of novel ceria‐stabilized zirconia–alumina–aluminate composite ceramics (ZA8Sr8‐Ce11) with different surface topographies for use in clinical applications. Ceria‐stabilized zirconia is chosen as the matrix for the composite material, due to its lower susceptibility to aging than yttria‐stabilized zirconia (3Y‐TZP). This assessment is carried out on three preclinical investigation levels, indicating an overall biocompatibility of ceria‐stabilized zirconia‐based ceramics, both in vitro and in vivo. Long‐term attachment and mineralized extracellular matrix (ECM) deposition of primary osteoblasts are the most distinct on porous ZA8Sr8‐Ce11p surfaces, while ECM attachment on 3Y‐TZP and ZA8Sr8‐Ce11 with compact surface texture is poor. In this regard, the animal study confirms the porous ZA8Sr8‐Ce11p to be the most favorable material, showing the highest bone‐to‐implant contact values and implant stability post implantation in comparison with control groups. Moreover, the microbiological evaluation reveals no favoritism of biofilm formation on the porous ZA8Sr8‐Ce11p when compared to a smooth control surface. Hence, together with the in vitro in vivo assessment analogy, the promising clinical potential of this novel ZA8Sr8‐Ce11 as an implant material is demonstrated.  相似文献   

8.
3D Bi2O3 fractal nanostructures (f‐Bi2O3) are directly self‐assembled on carbon fiber papers (CFP) using a scalable hot‐aerosol synthesis strategy. This approach provides high versatility in modulating the physiochemical properties of the Bi2O3 catalyst by a tailorable control of its crystalline size, loading, electron density as well as providing exposed stacking of the nanomaterials on the porous CFP substrate. As a result, when tested for electrochemical CO2 reduction reactions (CO2RR), these f‐Bi2O3 electrodes demonstrate superior conversion of CO2 to formate (HCOO?) with low onset overpotential and a high mass‐specific formate partial current density of ?52.2 mA mg?1, which is ≈3 times higher than that of the drop‐casted control Bi2O3 catalyst (?15.5 mA mg?1), and a high Faradaic efficiency (FEHCOO?) of 87% at an applied potential of ?1.2 V versus reversible hydrogen electrode. The findings reveal that the high exposure of roughened β‐phase Bi2O3/Bi edges and the improved electron density of these fractal structures are key contributors in attainment of high CO2RR activity.  相似文献   

9.
La0.6Sr0.4CoO3–δ (LSC) thin‐film electrodes are prepared on yttria‐stabilized zirconia (YSZ) substrates by pulsed laser deposition at different deposition temperatures. The decrease of the film crystallinity, occurring when the deposition temperature is lowered, is accompanied by a strong increase of the electrochemical oxygen exchange rate of LSC. For more or less X‐ray diffraction (XRD)‐amorphous electrodes deposited between ca. 340 and 510 °C polarization resistances as low as 0.1 Ω cm2 can be obtained at 600 °C. Such films also exhibit the best stability of the polarization resistance while electrodes deposited at higher temperatures show a strong and fast degradation of the electrochemical kinetics (thermal deactivation). Possible reasons for this behavior and consequences with respect to the preparation of high‐performance solid oxide fuel cell (SOFC) cathodes are discussed.  相似文献   

10.
In 2009, Karimi et al. reported that Bi1‐xNdxFeO3 0.15 ≤ x ≤ 0.25 exhibited a PbZrO3 (PZ)‐like structure. These authors presented some preliminary electrical data for the PZ‐like composition but noted that the conductivity was too high to obtain radio‐frequency measurements representative of the intrinsic properties. In this study, Bi0.85Nd0.15Fe1‐yTiyO3 (0 ≤ y ≤ 0.1) were investigated, in which Ti acted as a donor dopant on the B‐site. In contrast to the original study of Karimi et al., X‐ray diffraction (XRD) of Bi0.85Nd0.15FeO3 revealed peaks which were attributed to a mixture of PZ‐like and rhombohedral structures. However, as the Ti (0 < y ≤ 0.05) concentration increased, the rhombohedral peaks disappeared and all intensities were attributed to the PZ‐like phase. For y = 0.1, broad XRD peaks indicated a significant decrease in effective diffracting volume. Electron diffraction confirmed that the PZ‐like phase was dominant for y ≤ 0.05, but for y = 0.1, an incommensurate structure was present, consistent with the broadened XRD peaks. The substitution of Fe3+ by Ti4+ decreased the dielectric loss at room temperature from >0.3 to <0.04 for all doped compositions, with a minimum (0.015) observed for y = 0.03. The decrease in dielectric loss was accompanied by a decrease in the room temperature bulk conductivity from ~1 mS cm?1 to <1 μS cm?1 and an increase in bulk activation energy from 0.29 to >1 eV. Plots of permittivity (?r) versus temperature for 0.01 ≤ y ≤ 0.05 revealed a step rather than a peak in ?r on heating at the same temperature determined for the antiferroelectric–paraelectric phase transition by differential scanning calorimetry. Finally, large electric fields were applied to all doped samples which resulted in a linear dependence of polarisation on the electric field similar to that obtained for PbZrO3 ceramics under equivalent experimental conditions.  相似文献   

11.
High‐temperature powder neutron diffraction experiments are conducted around the reported β–γ phase transition (~930 °C) in BiFeO3. The results demonstrate that while a small volume contraction is observed at the transition temperature, consistent with an insulator–metal transition, both the β‐ and γ‐phase of BiFeO3 exhibit orthorhombic symmetry; i.e., no further increase of symmetry occurs during this transition. The γ‐orthorhombic phase is observed to persist up to a temperature of approximately 950 °C before complete decomposition into Bi2Fe4O9 (and liquid Bi2O3), which subsequently begins to decompose at approximately 960 °C.  相似文献   

12.
Typical 18‐electron half‐Heusler compounds, ZrNiSn and NbFeSb, are identified as promising high‐temperature thermoelectric materials. NbCoSb with nominal 19 valence electrons, which is supposed to be metallic, is recently reported to also exhibit thermoelectric properties of a heavily doped n‐type semiconductor. Here for the first time, it is experimentally demonstrated that the nominal 19‐electron NbCoSb is actually the composite of 18‐electron Nb0.8+δCoSb (0 ≤ δ < 0.05) and impurity phases. Single‐phase Nb0.8+δCoSb with intrinsic Nb vacancies, following the 18‐electron rule, possesses improved thermoelectric performance, and the slight change in the content of Nb vacancies has a profound effect on the thermoelectric properties. The carrier concentration can be controlled by varying the Nb deficiency, and the optimization of the thermoelectric properties can be realized within the narrow pure phase region. Benefiting from the elimination of impurity phases and the optimization of carrier concentration, thermoelectric performance is remarkably enhanced by ≈100% and a maximum zT of 0.9 is achieved in Nb0.83CoSb at 1123 K. This work expands the family of half‐Heusler thermoelectric materials and opens a new avenue for searching for nominal 19‐electron half‐Heusler compounds with intrinsic vacancies as promising thermoelectric materials.  相似文献   

13.
While the properties of functional oxide thin films often depend strongly on oxygen stoichiometry, there have been few means available for its control in a reliable and in situ fashion. This work describes the use of DC bias as a means of systematically controlling the stoichiometry of oxide thin films deposited onto yttria‐stabilized zirconia substrates. Impedance spectroscopy is performed on the electrochemical cell Pr0.1Ce0.9O2?δ (PCO)/YSZ/Ag for conditions: T = 550 to 700 °C, pO 2 = 10?4 to 1 atm, and ΔE = ‐100 to 100 mV. The DC bias ΔE is used to control the effective pO 2 or oxygen activity at the PCO/YSZ interface. The non‐stoichiometry (δ) of the PCO films is calculated from the measured chemical capacitance (Cchem ). These δ values, when plotted isothermally as a function of effective pO 2, established, either by the surrounding gas composition alone, or in combination with applied bias, agree well with each other and to predictions based on a previously determined defect model. These results confirm the suitability of using bias to precisely control δ of thin films in an in situ fashion and simultaneously monitor these changes by measurement of Cchem . Of further interest is the ability to reach effective pO 2s as high as 280 atm.  相似文献   

14.
The influences of Bi2O3 addition on the sintering behavior and microwave dielectric properties of ZnO-TiO2 ceramics were investigated. ZnO-TiO2 ceramics were prepared with conventional solid-state method and sintered at temperatures from 950°C to 1,100°C. The sintering temperature of ZnO-TiO2 ceramics with Bi2O3 addition could be effectively reduced to 1,000°C due to the liquidphase effects resulting from the additives. A proper amount of Bi2O3 addition could effectively improve the densification and dielectric properties of ZnO-TiO2 ceramics. The temperature coefficient of resonant frequency could be controlled by varying the sintering temperature and lead to a zero τf value. At 1,000°C, 1ZnO-1TiO2 ceramics with 1 wt.% addition gave better microwave dielectric properties ɛr of 29.3, a Q × f value of 22,000 GHz at 8.36 GHz, and a τf value of +17.4 ppm/ °C.  相似文献   

15.
The objective of this research is the development of chemical routes for the preparation of high‐temperature superconducting powders. A simple sol–gel synthesis technique for preparing the superconducting compound Hg1−xTlxBa2Ca2Cu3O8+δ (Hg,Tl‐1223) has been refined. A systematic study of the influence of synthesis conditions on the phase purity of the obtained superconducting material is described. We have demonstrated that superconducting Hg1−xTlxBa2Ca2Cu3O8+δ phase of good quality can be obtained by this sol–gel synthesis method. Replacing Hg by Tl in the bulk material significantly increased the superconducting transition temperature. An as‐prepared sample showed TC(onset)=136 K, but after oxygen treatment the critical temperature of Hg1−xTlxBa2Ca2Cu3O8+δ superconductor increased to 140 K. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
In the architecture described, cuprous oxide (Cu2O) is tamed to be highly (111) plane oriented nanostructure through adjusting the deposition postulate by glancing angle deposition technique. In the controlled atmosphere oxygen vacancy is introduced into the Cu2O crystal subsequently fostering an impurity energy state (Eim) close to the conduction band. Our model of Cu2O electronic structure using density functional theory suggests that oxygen vacancies enhance the electron donating ability because of unshared d‐electrons of Cu atoms (nearest to the vacancy site), allowing to pin the work function energy level around 0.28 eV compared to the bulk. This result is also complemented by Kelvin probe force microscopy analysis and X‐ray photoelectron spectroscopy method. Oxygen vacancy in Cu2O (Cu2O1‐δ) exhibits promising field emission properties with interesting field electron tunneling behavior at different applied fields. The films show very low turn‐on and threshold voltages of value 0.8 and 2.4 V μm?1 respectively which is influenced by the oxygen vacancy. Here, a correlation between the work function modulation due to the oxygen vacancy and enhancement of field emission of Cu2O1–δ nanostructure is demonstrated. This work reveals a promising new vision for Cu2O as a low power field emitter device.  相似文献   

17.
An important challenge in current microelectronics research is the development of techniques for making smaller, higher‐performance electronic components. In this context, the fabrication and integration of ultrathin high‐κ dielectrics with good insulating properties is an important issue. Here, we report on a rational approach to produce high‐performance nanodielectrics using one‐nanometer‐thick oxide nanosheets as a building block. In titano niobate nanosheets (TiNbO5, Ti2NbO7, Ti5NbO14), the octahedral distortion inherent to site‐engineering by Nb incorporation results in a giant molecular polarizability, and their multilayer nanofilms exhibit a high dielectric constant (160–320), the largest value seen so far in high‐κ nanofilms with thickness down to 10 nm. Furthermore, these superior high‐κ properties are fairly temperature‐independent with low leakage‐current density (<10?7 A cm?2). This work may provide a new recipe for designing nanodielectrics desirable for practical high‐κ devices.  相似文献   

18.
BiFeO3 is recognized as the most important room temperature single phase multiferroic material. However, the weak magnetoelectric (ME) coupling remains as a key issue, which obstructs its applications. Since the magnetoelectric coupling in BiFeO3 is essentially hindered by the cycloidal spin structure, here efforts to improve the magnetoelectric coupling by destroying the cycloidal state and switching to the weak ferromagnetic state through symmetry modulation are reported. The structure is tuned from polar R3c to polar Pna21, and finally to nonpolar Pbnm by forming Bi1‐xNdxFeO3 solid solutions, where two morphotropic phase boundaries (MPBs) are detected. Greatly enhanced ferroelectric polarization is obtained together with the desired weak ferromagnetic characteristics in Bi1‐xNdxFeO3 ceramics at the compositions near MPBs. The change of magnetic state from antiferromagnetic (cycloidal state) to ferromagnetic (canted antiferromagnetic) is confirmed by the observation of magnetic domains using magnetic force microscopy. More interestingly, combining experiments and first‐principles‐based simulations, an electric field‐induced structural and magnetic transition from Pna21 back to R3c is demonstrated, providing a great opportunity for electric field‐controlled magnetism, and this transition is shown to be reversible with additional thermal treatment.  相似文献   

19.
Reversible solid oxide cells based on ceramic proton conductors have potential to be the most efficient system for large‐scale energy storage. The performance and long‐term durability of these systems, however, are often limited by the ionic conductivity or stability of the proton‐conducting electrolyte. Here new family of solid oxide electrolytes, BaHfxCe0.8?xY0.1Yb0.1O3?δ (BHCYYb), which demonstrate a superior ionic conductivity to stability trade‐off than the state‐of‐the‐art proton conductors, BaZrxCe0.8?xY0.1Yb0.1O3?δ (BZCYYb), at similar Zr/Hf concentrations, as confirmed by thermogravimetric analysis, Raman, and X‐ray diffraction analysis of samples over 500 h of testing are reported. The increase in performance is revealed through thermodynamic arguments and first‐principle calculations. In addition, lab scale full cells are fabricated, demonstrating high peak power densities of 1.1, 1.4, and 1.6 W cm?2 at 600, 650, and 700 °C, respectively. Round‐trip efficiencies for steam electrolysis at 1 A cm?2 are 78%, 72%, and 62% at 700, 650, and 600 °C, respectively. Finally, CO2? H2O electrolysis is carried out for over 700 h with no degradation.  相似文献   

20.
Atomic‐layer‐deposited aluminium oxide (Al2O3) is applied as rear‐surface‐passivating dielectric layer to passivated emitter and rear cell (PERC)‐type crystalline silicon (c‐Si) solar cells. The excellent passivation of low‐resistivity p‐type silicon by the negative‐charge‐dielectric Al2O3 is confirmed on the device level by an independently confirmed energy conversion efficiency of 20·6%. The best results are obtained for a stack consisting of a 30 nm Al2O3 film covered by a 200 nm plasma‐enhanced‐chemical‐vapour‐deposited silicon oxide (SiOx) layer, resulting in a rear surface recombination velocity (SRV) of 70 cm/s. Comparable results are obtained for a 130 nm single‐layer of Al2O3, resulting in a rear SRV of 90 cm/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号