首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo‐lithographically defined CNT pillars that are conformally coated with amorphous silicon carbide (a‐SiC) to strengthen the interlocking of individual CNTs at junctions using low pressure chemical vapor deposition (LPCVD). We further quantify the mechanical response by performing flat‐punch nanoindentation measurements on coated CNT pillars with various high‐aspect‐ratios. We discovered new mechanical failure modes of coated CNT pillars, such as “bamboo” and brittle‐like composite rupture as coating thickness increases. Furthermore, a significant increase in strength and modulus is achieved. For CNT pillars with high aspect ratio (1:10) and coating thickness of 21.4 nm, the compressive strength increases by an order of magnitude of 3, towards 1.8 GPa (from below 1 MPa for uncoated CNT pillars) and the elastic modulus increases towards 125 GPa. These results show that our coated CNT pillars, which can serve as vertical interconnects and 3D super‐capacitors, can be transformed into robust high‐aspect‐ratio 3D‐micro architectures with semiconductor device compatible processes.  相似文献   

2.
Natural materials such as bone and tooth achieve precisely tuned mechanical and interfacial properties by varying the concentration and orientation of their nanoscale constituents. However, the realization of such control in engineered foams is limited by manufacturing‐driven tradeoffs among the size, order, and dispersion uniformity of the building blocks. It is demonstrated how to manufacture nanocomposite foams with precisely controllable mechanical properties via aligned carbon nanotube (CNT) growth followed by atomic layer deposition (ALD). By starting with a low density CNT forest and varying the ALD coating thickness, we realize predictable ≈1000‐fold control of Young's modulus (14 MPa to 20 GPa, where Eρ 2.8), ultimate compressive strength (0.8 MPa to 0.16 GPa), and energy absorption (0.4 to 400 J cm–3). Owing to the continuous, long CNTs within the ceramic nanocomposite, the compressive strength and toughness of the new material are 10‐fold greater than commercially available aluminum foam over the same density range. Moreover, the compressive stiffness and strength equal that of compact bone at 10% lower density. Along with emerging technologies for scalable patterning and roll‐to‐roll manufacturing and lamination of CNT films, coated CNT foams may be especially suited to multifunctional applications such as catalysis, filtration, and thermal protection.  相似文献   

3.
Thin polymer coatings are very popular, but the coatings on uneven surfaces or porous 3D structures are difficult to obtain with traditional methods. The pores are easily clogged due to nonuniform polymer curing processes caused by inevitable macroscale temperature gradients from their hotter outer to colder inner sides. Here an ultrafast and simple fabrication method is developed to obtain nanoscale coating layers on the inner and outer surfaces of a porous 3D sponge‐like carbon nanotube (CNT). Microwave irradiation rapidly and selectively heats the CNT immersed in a mixture solution of an uncured polymer and a diluent solvent, solidifying the polymer only adjacent to the CNT with five repeated 3 s microwave irradiation. The coating layers can be controlled by adjusting the concentration of the uncured polymer in the solution and controlling the CNT temperature via microwave power and irradiation time. The nanoscale coating strongly ties the junction between CNTs without filling the pores with the polymer, resulting in excellent resilience to compressive stress with large strains (≈180 kPa at 60%), which is maintained throughout repeated 8000 cycles of 0–60% strain. The unfilled pores allow for maintaining the low thermal conductivity, ≈26 mW m?1 K?1, and the electrical resistance is varied with strain. This facile selective polymer curing methodology can be utilized in processing various materials with uneven surfaces or pores.  相似文献   

4.
The quest for more efficient energy-related technologies is driving the development of porous and high-performance structural materials with exceptional mechanical strength. Natural materials achieve their strength through complex hierarchical designs and anisotropic structures that are extremely difficult to replicate synthetically. We emulate nature's design by direct-ink-write assembling of glass scaffolds with a periodic pattern, and controlled sintering of the filaments into anisotropic constructs similar to biological materials. The final product is a porous glass scaffold with a compressive strength (136 MPa) comparable to that of cortical bone and a porosity (60%) comparable to that of trabecular bone. The strength of this porous glass scaffold is ~100 times that of polymer scaffolds and 4-5 times that of ceramic and glass scaffolds with comparable porosities reported elsewhere. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for a broad array of applications, including tissue engineering, filtration, lightweight composites, and catalyst support.  相似文献   

5.
Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the fabrication of CNT fiber based stretchable conductors by a simple prestraining‐then‐buckling approach is reported. To enhance the interfacial bonding between the fibers and the poly(dimethylsiloxane) (PDMS) substrate and thus facilitate the buckling formation, CNT fibers are first coated with a thin layer of liquid PDMS before being transferred to the prestrained substrate. The CNT fibers are deformed into massive buckles, resulting from the compressive force generated upon releasing the fiber/substrate assembly from prestrain. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise analogous systems. Similar experiments performed on carbon fiber/PDMS composite film, on the other hand, result in extensive fiber fracture due to the higher fiber flexural modulus. Furthermore, the CNT fiber/PDMS composite film shows very little variation in resistance (≈1%) under multiple stretching‐and‐releasing cycles up to a prestrain level of 40%, indicating the outstanding stability and repeatability in performance as stretchable conductors.  相似文献   

6.
曾寿金  吴启锐  叶建华 《红外与激光工程》2020,49(8):20190523-1-20190523-9
为了减轻或消除人工植入体的“应力屏蔽”效应,提高生物相容性,需要对选区激光熔化(SLM)技术成型多孔结构进行力学性能研究。通过制备316L不锈钢体心立方(BCC)、正十二面体(RD)两种多孔结构,分别进行成型件纵向压缩试验,建立了Gibson-Ashby模型,预测了多孔结构弹性模量值。采用分形插值法,分析了孔隙率、平均孔径、比表面积对多孔结构弹性模量和抗压强度的影响程度。分析试验表明,316L不锈钢多孔结构样件在孔隙率为55.13%~94.74%,平均孔径为1.90~4.22 mm,比表面积0.54~4.33时,其弹性模量为0.375 ~1.716 GPa,抗压强度为43.19~160.31 MPa。对比人骨弹性模量0.9 ~1.7 GPa,满足植入体要求。孔隙率、平均孔径、比表面积对正十二面体多孔结构的弹性模量和抗压强度的幅值变化影响较小,对体心立方多孔结构影响较大。正十二面体多孔结构抗压强度为111.75~160.31 MPa,体心立方多孔结构的抗压强度为43.19~158.03 MPa,正十二面体多孔结构的力学性能比体心立方结构性能更好,为选区激光熔化技术制备316L不锈钢多孔结构的人工植入体研究提供依据。  相似文献   

7.
刘会霞  王凯  李品  张成  高阳阳  严长  王霄 《中国激光》2012,39(9):902008-47
激光透射连接具有生物相容性的异种材料在生物医学植入体及其封装中具有良好的应用前景。利用半导体激光器对镀钛玻璃与聚对苯二甲酸乙二酯(PET)进行激光透射连接试验,其中玻璃上镀钛薄膜是通过射频磁控溅射方法完成的镀膜。通过单因素工艺研究了主要工艺参数激光功率、扫描速度和镀钛薄膜的厚度对连接强度的影响,并探讨了玻璃基片的表面粗糙度对镀钛薄膜粗糙度以及其连接强度的影响。通过搭接剪切试验得到镀钛玻璃与PET之间的连接强度,采用真彩共聚焦材料显微镜对拉伸失效后的试样表面进行观测和失效分析,使用X射线光电子能谱(XPS)检测激光透射连接过程中镀钛玻璃与PET之间化学键的形成信息。结果表明:主要工艺参数激光功率、扫描速度对连接强度有着重要影响,增加玻璃基片的粗糙度和镀钛薄膜的厚度可以提高其连接强度,为激光透射连接镀钛玻璃与聚合物提供了参考。  相似文献   

8.
Graphene oxide (GO) papers are candidates for structural materials in modern technology due to their high specific strength and stiffness. The relationship between their mechanical properties and structure needs to be systematically investigated before they can be applied to the broad range fields where they have potential. Herein, the mechanical properties of GO papers with various thicknesses (0.5–100 μm) are investigated using bulge and tensile test methods; this includes the Young's modulus, fracture strength, fracture strain, and toughness. The Young's modulus, fracture strength, and toughness are found to decrease with increasing thickness, with the first two exhibiting differences by a factor of four. In contrast, the fracture strain slightly increases with thickness. Transmission electron, scanning electron, and atomic force microscopy indicate that the mechanical properties vary with thickness due to variations in the inner structure and surface morphology, such as crack formation and surface roughness. Thicker GO papers are weaker because they contain more voids that are produced during the fabrication process. Surface wrinkles and residual stress are found to result in increased fracture strain. Determination of this structure–property relationship provide improved guidelines for the use of GO‐based thin‐film materials in mechanical structures.  相似文献   

9.
Scaffolds with potential biological applications having a variety of microstructural and mechanical properties can be fabricated by freezing colloidal solutions into porous solids. In this work, the structural and mechanical properties of TiO2 freeze cast with different soluble additives, including polyethylene glycol, NaOH or HCl, and isopropanol alcohol, are characterized to determine the effects of slurry viscosity, pH, and alcohol concentration on the freezing process. TiO2 powders mixed with water and these different additives are directionally frozen in a mold, then sublimated and sintered to create the porous scaffolds. The different scaffolds are characterized to compare the compressive strength, modulus, porosity, and pore morphology. For all scaffolds, the overall porosity remains constant (80–85%). By changing the concentration of each additive, the lamellar thickness, pore area, and aspect ratio vary significantly, showing inverse relationships to both the compressive strength and modulus. The strength is predicted from the pore aspect ratio of the scaffolds when subjected to compressive loading with the primary failure mode identified as Euler buckling. TiO2 scaffolds freeze cast with different soluble additives are suitable for biomedical applications, such as bone replacements, requiring high porosity and specific pore morphologies.  相似文献   

10.
A new atomic layer deposition (ALD) process for nanocrystalline tin dioxide films is developed and applied for the coating of nanostructured materials. This approach, which is adapted from non‐hydrolytic sol‐gel chemistry, permits the deposition of SnO2 at temperatures as low as 75 °C. It allows the coating of the inner and outer surface of multiwalled carbon nanotubes with a highly conformal film of controllable thickness. The ALD‐coated tubes are investigated as active components in gas‐sensor devices. Due to the formation of a p‐n heterojunction between the highly conductive support and the SnO2 thin film an enhancement of the gas sensing response is observed.  相似文献   

11.
This article reports on carbon nanotubes (CNT) grown on TiN/Cu stacks by plasma enhanced chemical vapor deposition (PECVD) at 450 °C. Ni catalyst was deposited by two techniques - physical vapor deposition (PVD) and electrochemical deposition (ECD). First, the influence of the catalyst thickness and the catalyst deposition technique on grown CNTs is investigated. Second, the enhancement of the CNTs growth by use of electrodeposited catalysts is emphasized.  相似文献   

12.
The coating of highly porous Bioglass® based 3D scaffolds with multi‐walled carbon nanotubes (CNT) was investigated. Foam like Bioglass® scaffolds were fabricated by the replica technique and electrophoretic deposition was used to deposit homogeneous layers of CNT throughout the scaffold pore structure. The optimal experimental conditions were determined to be: applied voltage 15 V and deposition time 20 minutes, utilizing a concentrated aqueous suspension of CNT with addition of a surfactant and iodine. The scaffold pore structure remained invariant after the CNT coating, as assessed by SEM. The incorporation of CNTs induced a nanostructured internal surface of the pores which is thought to be beneficial for osteoblast cell attachment and proliferation. Bioactivity of the scaffolds was assessed by immersion studies in simulated body fluid (SBF) for periods of up to 2 weeks and the subsequent determination of hydroxyapatite (HA) formation. The presence of CNTs can enhance the bioactive behaviour of the scaffolds since CNTs can serve as template for the ordered formation of a nanostructured HA layers, which does not occur on uncoated Bioglass® surfaces.  相似文献   

13.
Deposition techniques that can uniformly and conformally coat deep trenches and very high aspect ratio pores with uniform thickness films are valuable in the synthesis of complex three‐dimensionally structured materials. Here it is shown that high pressure chemical vapor deposition can be used to deposit conformal films of II–VI semiconductors such as ZnSe, ZnS, and ZnO into high aspect ratio pores. Microstructured optical fibers serve as tailored templates for the patterning of II–VI semiconductor microwire arrays of these materials with precision and flexibility. In this way, centimeters‐long microwires with exterior surfaces that conform well to the nearly atomically smooth silica templates can be fabricated by conformal coating. This process allows for II–VI semiconductors, which cannot be processed into optical fibers with conventional techniques, to be fabricated into step index and microstructured optical fibers.  相似文献   

14.
The production of carbon nanotube (CNT) yarns possessing high strength and toughness remains a major challenge due to the intrinsically weak interactions between “bare” CNTs. To this end, nanomechanical shear experiments between functionalized bundles of CNTs are combined with multiscale simulations to reveal the mechanistic and quantitative role of nanotube surface functionalization on CNT‐CNT interactions. Notably, the in situ chemical vapor deposition (CVD) functionalization of CNT bundles by poly(methyl methacrylate) (PMMA)‐like oligomers is found to enhance the shear strength of bundle junctions by about an order of magnitude compared with “bare” van der Waals interactions between pristine CNTs. Through multiscale simulations, the enhancement of the shear strength can be attributed to an interlocking mechanism of polymer chains in the bundles, dominated by van der Waals interactions, and stretching and alignment of chains during shearing. Unlike covalent bonds, such synergistic weak interactions can re‐form upon failure, resulting in strong, yet robust fibers. This work establishes the significance of engineered weak interactions with appropriate structural distribution to design CNT yarns with high strength and toughness, similar to the design paradigm found in many biological materials.  相似文献   

15.
This investigation applied a hybrid method, which combined a trained radial basis network (RBN) [S. Chen, C.F.N. Cowan, P.M. Grant. Orthogonal least squares learning algorithm for radial basis function networks. Neural Networks 2(2) (1991), 302-309] and a sequential quadratic programming (SQP) method [R. Fletcher, Practical Methods of Optimizations, vol. 1, Unconstrained Optimization, and vol. 2, Constrained Optimization, John Wiley and Sons Inc., New York, 1981], to determine an optimal parameter setting for photoresist (PR) coating processes of photolithography in wafer manufacture. Nine experimental runs based on an orthogonal array table were utilized to train the RBN and the SQP method was applied to search for an optimal setting. An orthogonal array table provided an economical and systematic arrangement of experiments to map the relationship between controlled parameters and desired outputs. In this study, a mean thickness and non-uniformity of the thickness of the PR were selected as monitored quality targets for the PR coating process. In addition, the PR temperature, the chamber humidity, the spinning rate, and the dispensation rate were four controlled parameters. The PR temperature and the chamber humidity were found to be the most significant factors in the mean thickness and non-uniformity of the thickness for the PR coating process from the analysis of variance (ANOVA).  相似文献   

16.
The construction of hollow nanostructure by compositing with carbonaceous materials is generally considered an effective strategy to mitigate the drastic volume expansion of transition metal sulfides (TMSs) with high theoretical specific capacity in the process of lithium storage. However, designing well-controlled architectures with extended lithiation cyclic stability, and ease the expansion of the electroactive materials into the reserved hollow spaces still needs to be developed. Herein, using MnS as an example, the hollow double-shell carbon-coated TMSs architecture is designed to achieve the controllable operation of shell thickness to regulate interfacial stress. The functional architecture enables the high-capacity MnS to reach reversible capacities and extended lithiation cycling stability at high current densities. In situ transmission electron microscopy, optical observation characterizations and finite elements are used to analyze the nanoconfined expansion behavior of hollow MnS@C anodes. The as-designed hollow structure with a carbon shell thickness ≈12.5 nm can effectively restrict the drastic expansion of MnS nanoshell into inner voids with compressive stress. This study demonstrates a general strategy to design functional carbon coating metal sulfides with tailored interfacial stress.  相似文献   

17.
Polymer–multiwalled carbon nanotube composite films were fabricated using two types of polymer matrices, namely poly(vinyl alcohol), (PVA) and chlorinated polypropylene. In the first case, the PVA was observed to form a crystalline coating around the nanotubes, maximising interfacial stress transfer. In the second case the interface was engineered by covalently attaching chlorinated polypropylene chains to the nanotubes, again resulting in large stress transfer. Increases in Young's modulus, tensile strength, and toughness of × 3.7, × 4.3, and × 1.7, respectively were observed for the PVA‐based materials at less than 1 wt.‐% nanotubes. Similarily for the polypropylene‐based composites, increases in Young's modulus, tensile strength and toughness of × 3.1, × 3.9, and × 4.4, respectively, were observed at equivalent nanotube loading levels. In addition, a model to describe composite strength was derived. This model shows that the tensile strength increases in proportion to the thickness of the interface region. This suggests that composite strength can be optimized by maximising the thickness of the crystalline coating or the thickness of the interfacial volume partially occupied by functional groups.  相似文献   

18.
聚对二甲苯(Parylene)是一种性能优异的敷形涂层材料,在航空、航天、电子领域的应用前景非常广泛。文中介绍了Parylene涂层绝缘性能的试验方法和试验过程,使用真空气相沉积技术制备了Parylene C、Parylene N、Parylene D涂层,对3种涂层不同厚度情况下的绝缘性能进行了比较,研究了涂层在常态下和温度冲击、湿热试验后的绝缘性能变化情况。为Parylene涂层在电子组件防护中的应用提供了技术支撑。  相似文献   

19.
Even though halide perovskite materials have been increasingly investigated as flexible devices, mechanical properties under flexible environments have rarely been reported on. Herein, a nonconventional deposition technique that can generate extra compressive or tensile stress in representative inorganic CsPbBr3 and hybrid MAPbI3 (methylammonium lead iodide) halide perovskites is proposed for higher mechanical flexibility. As an impressive result of bending fracture evaluation, fracture energy is substantially improved by ≈260% for CsPbBr3 and ≈161% for MAPbI3 with the maximum compressive strain of −1.33%. Origin of the flexibility enhancements by the in situ strain is verified with structural simulation where the anisotropic lattice distortion, that is, contraction in the ab plane and elongation along the c-axis, is evident with changes in atomic bond lengths and angles in the halide perovskites. Other mechanical properties such as hardness, film strength, and fracture toughness are also discussed with direct comparisons between the inorganic and hybrid halides. Beyond the successful adjustment of this in situ deposition technique, the strain-dependent mechanical properties are expected to be extensively useful for designing halides-based flexible devices.  相似文献   

20.
常雷  蒋毅坚  龚小南 《中国激光》2007,34(s1):133-136
采用脉冲激光溅射沉积技术在LaAlO3(001)衬底上制备了一系列不同厚度(40~240 nm)的La0.67Ba0.33MnO3薄膜。通过控制薄膜的厚度,获得了不同应变态的La0.67Ba0.33MnO3薄膜。根据X射线衍射(XRD)数据详细分析了薄膜厚度变化对c轴晶格常数的影响。采用标准的直流四探针法和超导量子干涉仪分别测量了薄膜的电阻温度特性和磁化强度温度特性。研究发现,La0.67Ba0.33MnO3薄膜的居里温度和金属绝缘态转变温度随压缩应变的增大而减小,即压缩应变抑制了La0.67Ba0.33MnO3薄膜的铁磁性,降低了居里温度。这一结果与以往压缩应变增强铁磁性并提高居里温度的结论相异,不能利用Millis的应变理论模型进行定性解释。利用超巨磁电阻(CMR)薄膜材料的应变效应对eg轨道稳定性的影响对La0.67Ba0.33MnO3薄膜的异常磁电输运效应进行了解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号