首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bismuth (Bi) is an attractive material as anodes for both sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g?1) and high volumetric capacity (3800 mAh L?1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore–shell structured Bi@N‐doped carbon (Bi@N‐C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N‐doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N‐C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g?1 after 2000 cycles at 10 A g?1) and KIBs (152 mAh g?1 at 100 A g?1). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.  相似文献   

2.
To develop high‐performance anode materials of lithium‐ion batteries (LIBs) instead of commercial graphite for practical applications, herein, a layer of silicon has been well‐anchored onto a 3D graphene/carbon nanotube (CNT) aerogels (CAs) framework with face‐to‐face contact and balanced open void by a simple chemical vapor deposition strategy. The engineered contact interface between CAs and Si creates high‐efficiency channels for the rapid electrons and lithium ions transport, and meanwhile, the balanced open‐void allows the free expansion of Si during cycling while maintaining high structural integrity due to the robust mechanical strength of 3D CAs framework. As a consequence, the as‐synthesized Si/CAs nanohybrids are highly stable anode materials for LIBs with a high reversible discharge capacity (1498 mAh g?1 at 200 mA g?1) and excellent rate capability (462 mAh g?1 at 10 000 mA g?1), which is much better than Si/graphene‐CNTs‐mixture (51 mAh g?1 at 10 000 mA g?1). More significantly, it is found that the Si/CAs nanohybrids display no obvious capacity decline even after 2000 cycles at a high current density of 10 000 mA g?1. The present Si/CAs nanohybrids are one of the most stable Si‐based anode materials ever reported for LIBs to date.  相似文献   

3.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

4.
Metal oxide‐based nanomaterials are widely studied because of their high‐energy densities as anode materials in lithium‐ion batteries. However, the fast capacity degradation resulting from the large volume expansion upon lithiation hinders their practical application. In this work, the preparation of walnut‐like multicore–shell MnO encapsulated nitrogen‐rich carbon nanocapsules (MnO@NC) is reported via a facile and eco‐friendly process for long‐cycling Li‐ion batteries. In this hybrid structure, MnO nanoparticles are uniformly dispersed inside carbon nanoshells, which can simultaneously act as a conductive framework and also a protective buffer layer to restrain the volume variation. The MnO@NC nanocapsules show remarkable electrochemical performances for lithium‐ion batteries, exhibiting high reversible capability (762 mAh g?1 at 100 mA g?1) and stable cycling life (624 mAh g?1 after 1000 cycles at 1000 mA g?1). In addition, the soft‐packed full batteries based on MnO@NC nanocapsules anodes and commercial LiFePO4 cathodes present good flexibility and cycling stability.  相似文献   

5.
GaN is demonstrated to be an ideal anode for Li‐ion batteries (LIBs) for the first time. Amorphous GaN@Cu nanorods (a‐GaN@Cu) freestanding electrode is designed via a low‐temperature pulsed laser deposition method, which exhibits prominent rate capability and untralong lifespan as an anode for LIBs. With porous interconnected metal nanorods substrate to improve the structure integrity and electronic conductivity, the a‐GaN@Cu electrode delivers a capacity recovery of 980 mAh g?1 after 150 cycles from 0.25 to 6.25 A g?1 and a high discharge capacity of 509 mAh g?1 after 3000 cycles at 10.0 A g?1. The lithium storage in the a‐GaN is also systematically studied, which suggests a redox reaction mechanism.  相似文献   

6.
Sodium‐ion batteries are attracting increasing interests as a promising alternative to lithium‐ion batteries due to the abundant resource and low cost of sodium. Despite phosphorus (P) has extremely high theoretical capacity of 2595 mAh g?1, its wide application for sodium‐ion battery is highly hampered by its fast capacity fading and low Coulombic efficiency as a result of large volume change upon cycling. Herein, a robust phosphorus anode with long cycle life for sodium‐ion battery via hybridization with functional conductive polymer is presented. To this end, the polyacrylonitrile is first dehydrogenated by sulfur via a facile thermal treatment, forming a conductive main chain embedded with C–S–S moieties. This functional conductive polymer enables the formation of P? S bonds between phosphorus and functional conductive matrix, leading to a robust electrode that can accommodate the large volume change upon substantial volume change in cycling. Consequently, this hybrid anode delivers a high capacity of ≈1300 mAh g?1 at a current density of 520 mA g?1 with high Coulombic efficiency (>99%) and good cycling performance (91% capacity retention after 100 cycles).  相似文献   

7.
A covalently tethered polyoxometalate (POM)–pyrene hybrid (Py–SiW11) is utilized for the noncovalent functionalization of single‐walled carbon nanotubes (SWNTs). The resulting SWNTs/Py–SiW11 nanocomposite shows that both SiW11 and pyrene moieties could interact with SWNTs without causing any chemical decomposition. When used as anode material in lithium‐ion batteries, the SWNTs/Py–SiW11 nanocomposite exhibits higher discharge capacities, and better rate capacity and cycling stability than the individual components. When the current density is 0.5 mA cm?2, the nanocomposite exhibits the initial discharge capacity of 1569.8 mAh g?1, and a high discharge capacity of 580 mAh g?1 for up to 100 cycles.  相似文献   

8.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

9.
To tackle the issue of inferior cycle stability and rate capability for MnO anode materials in lithium ion batteries, a facile strategy is explored to prepare a hybrid material consisting of MnO nanocrystals grown on conductive graphene nanosheets. The prepared MnO/graphene hybrid anode exhibits a reversible capacity as high as 2014.1 mAh g?1 after 150 discharge/charge cycles at 200 mA g?1, excellent rate capability (625.8 mAh g?1 at 3000 mA g?1), and superior cyclability (843.3 mAh g?1 even after 400 discharge/charge cycles at 2000 mA g?1 with only 0.01% capacity loss per cycle). The results suggest that the reconstruction of the MnO/graphene electrodes is intrinsic due to conversion reactions. A long‐term stable nanoarchitecture of graphene‐supported ultrafine manganese oxide nanoparticles is formed upon cycling, which yields a long‐life anode material for lithium ion batteries. The lithiation and delithiation behavior suggests that the further oxidation of Mn(II ) to Mn(IV ) and the interfacial lithium storage upon cycling contribute to the enhanced specific capacity. The excellent rate capability benefits from the presence of conductive graphene and a short transportation length for both lithium ions and electrons. Moreover, the as‐formed hybrid nanostructure of MnO on graphene may help achieve faster kinetics of conversion reactions.  相似文献   

10.
Hollow structures are often used to relieve the intrinsic strain on metal oxide electrodes in alkali‐ion batteries. Nevertheless, one common drawback is that the large interior space leads to low volumetric energy density and inferior electric conductivity. Here, the von Mises stress distribution on a mesoporous hollow bowl (HB) is simulated via the finite element method, and the vital role of the porous HB structure on strain‐relaxation behavior is confirmed. Then, N‐doped‐C coated mesoporous α‐Fe2O3 HBs are designed and synthesized using a multistep soft/hard‐templating strategy. The material has several advantages: (i) there is space to accommodate strains without sacrificing volumetric energy density, unlike with hollow spheres; (ii) the mesoporous hollow structure shortens ion diffusion lengths and allows for high‐rate induced lithiation reactivation; and (iii) the N‐doped carbon nanolayer can enhance conductivity. As an anode in lithium‐ion batteries, the material exhibits a very high reversible capacity of 1452 mAh g?1 at 0.1 A g?1, excellent cycling stability of 1600 cycles (964 mAh g?1 at 2 A g?1), and outstanding rate performance (609 mAh g?1 at 8 A g?1). Notably, the volumetric specific capacity of composite electrode is 42% greater than that of hollow spheres. When used in potassium‐ion batteries, the material also shows high capacity and cycle stability.  相似文献   

11.
Fiber supercapacitors have aroused great interest in the field of portable and wearable electronic devices. However, the restrained surface area of fibers and limited reaction kinetics of active materials are unfavorable for performance enhancement. Herein, an efficient multicomponent hierarchical structure is constructed by integrating the Cu‐doped cobalt copper carbonate hydroxide@nickel cobalt layered double hydroxide (CCCH@NiCo‐LDH) core–shell nanowire arrays (NWAs) on Cu fibers with highly conductive Au‐modified CuO nanosheets (CCCH@NiCo‐LDH NWAs@Au–CuO/Cu) via a novel in situ corrosion growth method. This multicomponent hierarchical structure contributes to a large accessible surface area, which results in sufficient permeation of the electrolyte. The Cu dopant could reduce the work function and facilitate fast charge transfer kinetics. Therefore, the effective ion diffusion and electron conduction will facilitate the electrochemical reaction kinetics of the electrode. Benefiting from this unique structure, the electrode delivers a high specific capacitance (1.97 F cm?2/1237 F g?1/193.3 mAh g?1) and cycling stability (90.8% after 30 000 cycles), exhibiting superb performance compared with most oxide‐based fiber electrodes. Furthermore, the hybrid fiber supercapacitor of CCCH@NiCo‐LDH NWAs@Au–CuO/Cu//VN/carbon fibers is fabricated, providing a remarkable maximal energy density of 34.97 Wh kg?1 and a power density of 13.86 kW kg?1, exhibiting a great potential in high‐performance fiber‐shape energy‐related systems.  相似文献   

12.
Silicon nanoparticles (Si NPs) have been considered as promising anode materials for next‐generation lithium‐ion batteries, but the practical issues such as mechanical structure instability and low volumetric energy density limit their development. At present, the functional energy‐storing architectures based on Si NPs building blocks have been proposed to solve the adverse effects of nanostructures, but designing ideal functional architectures with excellent electrochemical performance is still a significant challenge. This study shows that the effective stress evolution management is applied for self‐assembled functional architectures via cross‐scale simulation and the simulated stress evolution can be a guide to design a scalable self‐assembled hierarchical Si@TiO2@C (SA‐SiTC) based on core–shell Si@TiO2 nanoscale building blocks. It is found that the carbon filler and TiO2 layer can effectively reduce the risk of cracking during (de)lithiation, ensuring the stability of the mechanical structure of SA‐SiTC. The SA‐SiTC electrode shows long cycling stability (842.6 mAh g?1 after 1000 cycles at 2 A g?1), high volumetric capacity (174 mAh cm?3), high initial Coulombic efficiency (80.9%), and stable solid‐electrolyte interphase (SEI) layer. This work provides insight into the development of the structural stable Si‐based anodes with long cycle life and high volumetric energy density for practical energy applications.  相似文献   

13.
Binders have been reported to play a key role in improving the cycle performance of Si anode materials of lithium‐ion batteries. In this study, the biopolymer guar gum (GG) is applied as the binder for a silicon nano­particle (SiNP) anode of a lithium‐ion battery for the first time. Due to the large number of polar hydroxyl groups in the GG molecule, a robust interaction between the GG binder and the SiNPs is achieved, resulting in a stable Si anode during cycling. More specifically, the GG binder can effectively transfer lithium ions to the Si surface, similarly to polyethylene oxide solid electrolytes. When GG is used as a binder, the SiNP anode can deliver an initial discharge capacity as high as 3364 mAh g?1, with a Coulombic efficiency of 88.3% at the current density of 2100 mA g?1, and maintain a capacity of 1561 mAh g?1 after 300 cycles. The study shows that the electrochemical performance of the SiNP anode with GG binder is significantly improved compared to that of a SiNP anode with a sodium alginate binder, and it demonstrates that GG is a promising binder for Si anodes of lithium‐ion batteries.  相似文献   

14.
Potassium‐ion batteries (KIBs) are new‐concept of low‐cost secondary batteries, but the sluggish kinetics and huge volume expansion during cycling, both rooted in the size of large K ions, lead to poor electrochemical behavior. Here, a bamboo‐like MoS2/N‐doped‐C hollow tubes are presented with an expanded interlayer distance of 10 Å as a high‐capacity and stable anode material for KIBs. The bamboo‐like structure provides gaps along axial direction in addition to inner cylinder hollow space to mitigate the strains in both radial and vertical directions that ultimately leads to a high structural integrity for stable long‐term cycling. Apart from being a constituent of the interstratified structure the N‐doped‐C layers weave a cage to hold the potassiation products (polysulfide and the Mo nanoparticles) together, thereby effectively hindering the continuing growth of solid electrolyte interphase in the interior of particles. The density functional theory calculations prove that the MoS2/N‐doped‐C atomic interface can provide an additional attraction toward potassium ion. As a result, it delivers a high capacity at a low current density (330 mAh g?1 at 50 mA g?1 after 50 cycles) and a high‐capacity retention at a high current density (151 mAh g?1 at 500 mA g?1 after 1000 cycles).  相似文献   

15.
Binder plays a key role in maintaining the mechanical integrity of electrodes in lithium‐ion batteries. However, the existing binders typically exhibit poor stretchability or low conductivity at large strains, which are not suitable for high‐capacity silicon (Si)‐based anodes undergoing severe volume changes during cycling. Herein, a novel stretchable conductive glue (CG) polymer that possesses inherent high conductivity, excellent stretchablity, and ductility is designed for high‐performance Si anodes. The CG can be stretched up to 400% in volume without conductivity loss and mechanical fracture and thus can accommodate the large volume change of Si nanoparticles to maintain the electrode integrity and stabilize solid electrolyte interface growth during cycling while retaining the high conductivity, even with a high Si mass loading of 90%. The Si‐CG anode has a large reversible capacity of 1500 mA h g?1 for over 700 cycles at 840 mA g?1 with a large initial Coulombic efficiency of 80% and high rate capability of 737 mA h g?1 at 8400 mA g?1. Moreover, the Si‐CG anode demonstrates the highest achieved areal capacity of 5.13 mA h cm?2 at a high mass loading of 2 mg cm?2. The highly stretchable CG provides a new perspective for designing next‐generation high‐capacity and high‐power batteries.  相似文献   

16.
A yolk‐shell‐structured carbon@void@silicon (CVS) anode material in which a void space is created between the inside silicon nanoparticle and the outer carbon shell is considered as a promising candidate for Li‐ion cells. Untill now, all the previous yolk‐shell composites were fabricated through a templating method, wherein the SiO2 layer acts as a sacrificial layer and creates a void by a selective etching method using toxic hydrofluoric acid. However, this method is complex and toxic. Here, a green and facile synthesis of granadilla‐like outer carbon coating encapsulated silicon/carbon microspheres which are composed of interconnected carbon framework supported CVS nanobeads is reported. The silicon granadillas are prepared via a modified templating method in which calcium carbonate was selected as a sacrificial layer and acetylene as a carbon precursor. Therefore, the void space inside and among these CVS nanobeads can be formed by removing CaCO3 with diluted hydrochloric acid. As prepared, silicon granadillas having 30% silicon content deliver a reversible capacity of around 1100 mAh g?1 at a current density of 250 mA g?1 after 200 cycles. Besides, this composite exhibits an excellent rate performance of about 830 and 700 mAh g?1 at the current densities of 1000 and 2000 mA g?1, respectively.  相似文献   

17.
A novel synergistic TiO2‐MoO3 (TO‐MO) core–shell nanowire array anode has been fabricated via a facile hydrothermal method followed by a subsequent controllable electrodeposition process. The nano‐MoO3 shell provides large specific capacity as well as good electrical conductivity for fast charge transfer, while the highly electrochemically stable TiO2 nanowire core (negligible volume change during Li insertion/desertion) remedies the cycling instability of MoO3 shell and its array further provides a 3D scaffold for large amount electrodeposition of MoO3. In combination of the unique electrochemical attributes of nanostructure arrays, the optimized TO‐MO hybrid anode (mass ratio: ca. 1:1) simultaneously exhibits high gravimetric capacity (ca. 670 mAh g?1; approaching the hybrid's theoretical value), excellent cyclability (>200 cycles) and good rate capability (up to 2000 mA g?1). The areal capacity is also as high as 3.986 mAh cm?2, comparable to that of typical commercial LIBs. Furthermore, the hybrid anode was assembled for the first time with commercial LiCoO2 cathode into a Li ion full cell, which shows outstanding performance with maximum power density of 1086 W kgtotal ?1 (based on the total mass of the TO‐MO and LiCoO2) and excellent energy density (285 Wh kgtotal ?1) that is higher than many previously reported metal oxide anode‐based Li full cells.  相似文献   

18.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

19.
As an anode material for lithium‐ion batteries, titanium dioxide (TiO2) shows good gravimetric performance (336 mAh g?1 for LiTiO2) and excellent cyclability. To address the poor rate behavior, slow lithium‐ion (Li+) diffusion, and high irreversible capacity decay, TiO2 nanomaterials with tuned phase compositions and morphologies are being investigated. Here, a promising material is prepared that comprises a mesoporous “yolk–shell” spherical morphology in which the core is anatase TiO2 and the shell is TiO2(B). The preparation employs a NaCl‐assisted solvothermal process and the electrochemical results indicate that the mesoporous yolk–shell microspheres have high specific reversible capacity at moderate current (330.0 mAh g?1 at C/5), excellent rate performance (181.8 mAh g?1 at 40C), and impressive cyclability (98% capacity retention after 500 cycles). The superior properties are attributed to the TiO2(B) nanosheet shell, which provides additional active area to stabilize the pseudocapacity. In addition, the open mesoporous morphology improves diffusion of electrolyte throughout the electrode, thereby contributing directly to greatly improved rate capacity.  相似文献   

20.
Na‐ion Batteries have been considered as promising alternatives to Li‐ion batteries due to the natural abundance of sodium resources. Searching for high‐performance anode materials currently becomes a hot topic and also a great challenge for developing Na‐ion batteries. In this work, a novel hybrid anode is synthesized consisting of ultrafine, few‐layered SnS2 anchored on few‐layered reduced graphene oxide (rGO) by a facile solvothermal route. The SnS2/rGO hybrid exhibits a high capacity, ultralong cycle life, and superior rate capability. The hybrid can deliver a high charge capacity of 649 mAh g?1 at 100 mA g?1. At 800 mA g?1 (1.8 C), it can yield an initial charge capacity of 469 mAh g?1, which can be maintained at 89% and 61%, respectively, after 400 and 1000 cycles. The hybrid can also sustain a current density up to 12.8 A g?1 (≈28 C) where the charge process can be completed in only 1.3 min while still delivering a charge capacity of 337 mAh g?1. The fast and stable Na‐storage ability of SnS2/rGO makes it a promising anode for Na‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号