首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is of great importance to reinforce electronic and ionic conductivity of Li4Ti5O12 electrodes to achieve fast reaction kinetics and good high‐power capability. Herein, for the first time, a dual strategy of combing N‐doped Li4Ti5O12 (N‐LTO) with highly conductive TiC/C skeleton to realize enhanced ultrafast Li ion storage is reported. Interlinked hydrothermal‐synthesized N‐LTO nanosheets are homogeneously decorated on the chemical vapor deposition (CVD) derived TiC/C nanowires forming binder‐free N‐LTO@TiC/C core–branch arrays. Positive advantages including large surface area, strong mechanical stability, and enhanced electronic/ionic conductivity are obtained in the designed integrated arrays and rooted upon synergistic TiC/C matrix and N doping. The above appealing features can effectively boost kinetic properties throughout the N‐LTO@TiC/C electrodes to realize outstanding high‐rate capability at different working temperatures (143 mAh g?1/10 C at 25 °C and 122 mAh g?1/50 C at 50 °C) and notable cycling stability with a capacity retention of 99.3% after 10 000 cycles at 10 C. Moreover, superior high‐rate cycling life is also demonstrated for the full cells with N‐LTO@TiC/C anode and LiFePO4 cathode. The dual strategy may provoke wide interests in fast energy storage areas and motivate the further performance improvement of power‐type lithium ion batteries (LIBs).  相似文献   

2.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

3.
One of the formidable challenges facing aprotic lithium‐oxygen (Li‐O2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt‐coated hollow graphene nanocages as cathode in Li‐O2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g?1, even maintain below 3.5 V when the current density increased to 500 mA g?1. The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri‐phase regions as active sites for efficient oxygen reduction, but also offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic‐level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene‐metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt‐decorated graphene nanocage cathode exhibits enhanced electrochemical performances.  相似文献   

4.
In this work, a new facile and scalable strategy to effectively suppress the initial capacity fading of iron oxides is demonstrated by reacting with lithium borohydride (LiBH4) to form a B‐containing nanocomposite. Multielement, multiphase B‐containing iron oxide nanocomposites are successfully prepared by ball‐milling Fe2O3 with LiBH4, followed by a thermochemical reaction at 25–350 °C. The resulting products exhibit a remarkably superior electrochemical performance as anode materials for Li‐ion batteries (LIBs), including a high reversible capacity, good rate capability, and long cycling durability. When cycling is conducted at 100 mA g?1, the sample prepared from Fe2O3–0.2LiBH4 delivers an initial discharge capacity of 1387 mAh g?1. After 200 cycles, the reversible capacity remains at 1148 mAh g?1, which is significantly higher than that of pristine Fe2O3 (525 mAh g?1) and Fe3O4 (552 mAh g?1). At 2000 mA g?1, a reversible capacity as high as 660 mAh g?1 is obtained for the B‐containing nanocomposite. The remarkably improved electrochemical lithium storage performance can mainly be attributed to the enhanced surface reactivity, increased Li+ ion diffusivity, stabilized solid‐electrolyte interphase (SEI) film, and depressed particle pulverization and fracture, as measured by a series of compositional, structural, and electrochemical techniques.  相似文献   

5.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

6.
A novel lyotropic liquid‐crystal (LC) based assembly strategy is developed for the first time, to fabricate composite films of vanadium pentoxide (V2O5) nanobelts and graphene oxide (GO) sheets, with highly oriented layered structures. It is found that similar lamellar LC phases can be simply established by V2O5 nanobelts alone or by a mixture of V2O5 nanobelts and GO nanosheets in their aqueous dispersions. More importantly, the LC phases can be retained with any proportion of V2O5 nanobelts and GO, which allows facile optimization of the ratio of each component in the resulting films. Named VrGO, composite films manifest high electrical conductivity, good mechanical stability, and excellent flexibility, which allow them to be utilized as high performance electrodes in flexible energy storage devices. As demonstrated in this work, the VrGO films containing 67 wt% V2O5 exhibit excellent capacitance of 166 F g?1 at 10 A g?1; superior to those of the previously reported composites of V2O5 and nanocarbon. Moreover, the VrGO film in flexible lithium ion batteries delivers a high capacity of 215 mAh g?1 at 0.1 A g?1; comparable to the best V2O5 based cathode materials.  相似文献   

7.
Sodium‐ion batteries (SIBs) are considered as promising alternatives to lithium‐ion batteries (LIBs) for energy storage due to the abundance of sodium, especially for grid distribution systems. The practical implementation of SIBs, however, is severely hindered by their low energy density and poor cycling stability due to the poor electrochemical performance of the existing electrodes. Here, to achieve high‐capacity and durable sodium storage with good rate capability, hierarchical hollow NiS spheres with porous shells composed of nanoparticles are designed and synthesized by tuning the reaction parameters. The formation mechanism of this unique structure is systematically investigated, which is clearly revealed to be Ostwald ripening mechanism on the basis of the time‐dependent morphology evolution. The hierarchical hollow structure provides sufficient electrode/electrolyte contact, shortened Na+ diffusion pathways, and high strain‐tolerance capability. The hollow NiS spheres deliver high reversible capacity (683.8 mAh g?1 at 0.1 A g?1), excellent rate capability (337.4 mAh g?1 at 5 A g?1), and good cycling stability (499.9 mAh g?1 with 73% retention after 50 cycles at 0.1 A g?1).  相似文献   

8.
Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T-Nb2O5) is a rapid ion intercalation material with a theoretical capacity of 201.7 mAh g−1 (Li2Nb2O5) and good cycling stability due to the minimal unit cell strain during (de)intercalation. Prior reports of T-Nb2O5 cycling between 1.3–3.1 V versus Li/Li+ noted a 50% loss in capacity after 10 000 cycles. Here, cyclic voltammetry is used to identify the role of the voltage window, state of charge, and potentiostatic holds on the cycling stability of mesoporous T-Nb2O5 thin films. Films cycled between 1.2–3.0 V versus Li/Li+ without voltage holds (Li1.1Nb2O5) exhibited extreme cycling stability with 90.8% capacity retention after 0.25 million cycles without detectable morphological/crystallographic changes. In contrast, the inclusion of 60 s voltage holds (Li2.18Nb2O5) led to rapid capacity loss with 61.6% retention after 10 000 cycles with corresponding X-ray diffraction evidence of amorphization. Cycling with other limited voltage windows identifies that most crystallographic degradation occurs at higher extents of lithiation. These results reveal remarkable stability over limited conditions and suggest that T-Nb2O5 amorphization is associated with high extents of lithiation.  相似文献   

9.
Lithium‐rich manganese‐based layered oxides show great potential as high‐capacity cathode materials for lithium ion batteries, but usually exhibit a poor cycle life, gradual voltage drop during cycling, and low thermal stability in the highly delithiated state. Herein, a strategy to promote the electrochemical performance of this material by manipulating the electronic structure through incorporation of boracic polyanions is developed. As‐prepared Li[Li0.2Ni0.13Co0.13Mn0.54](BO4)0.015(BO3)0.005O1.925 shows a decreased M‐O covalency and a lowered O 2p band top compared with pristine Li[Li0.2Ni0.13Co0.13Mn0.54]O2. As a result, the modified cathode exhibits a superior reversible capacity of 300 mA h g?1 after 80 cycles, excellent cycling stability with a capacity retention of 89% within 300 cycles, higher thermal stability, and enhanced redox couple potentials. The improvements are correlated to the enhanced oxygen stability that originates from the tuned electronic structure. This facile strategy may further be extended to other high capacity electrode systems.  相似文献   

10.
In this work, a novel hexagonal Li2MgSi anode is successfully prepared through a hydrogen‐driven chemical reaction technique. Electrochemical tests indicate significantly improved cycling stability for the as‐synthesized Li2MgSi compared with that of Mg2Si. Ball‐milling treatment induces a polymorphic transformation of Li2MgSi from a hexagonal structure to a cubic structure, suggesting that the cubic Li2MgSi is a metastable phase. The post‐24‐h‐milled Li2MgSi delivers a maximum capacity of 807.8 mAh g?1, which is much higher than that of pristine Li2MgSi. In particular, the post‐24‐h‐milled Li2MgSi retains 50% of its capacity after 100 cycles, which is superior to cycling stability of Mg2Si. XRD analyses correlated with CV measurements do not demonstrate the dissociation of metallic Mg and/or Li–Mg alloy involved in the lithiation of Mg2Si for the Li2MgSi anode, which contributes to the improved lithium storage performance of the Li2MgSi anode. The findings presented in this work are very useful for the design and synthesis of novel intermetallic compounds for lithium storage as anode materials of Li‐ion batteries.  相似文献   

11.
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (?2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g?1 at 20 mA g?1, fast rate capability of 103 mAh g?1 at 100 mA g?1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.  相似文献   

12.
This study reports the design and fabrication of ultrathin MoS2 nanosheets@metal organic framework‐derived N‐doped carbon nanowall array hybrids on flexible carbon cloth (CC@CN@MoS2) as a free‐standing anode for high‐performance sodium ion batteries. When evaluated as an anode for sodium ion battery, the as‐fabricated CC@CN@MoS2 electrode exhibits a high capacity (653.9 mA h g?1 of the second cycle and 619.2 mA h g?1 after 100 cycles at 200 mA g?1), excellent rate capability, and long cycling life stability (265 mA h g?1 at 1 A g?1 after 1000 cycles). The excellent electrochemical performance can be attributed to the unique 2D hybrid structures, in which the ultrathin MoS2 nanosheets with expanded interlayers can provide shortened ion diffusion paths and favorable Na+ insertion/extraction space, and the porous N‐doped carbon nanowall arrays on flexible carbon cloth are able to improve the conductivity and maintain the structural integrity. Moreover, the N‐doping‐induced defects also make them favorable for the effective storage of sodium ions, which enables the enhanced capacity and rate performance of MoS2.  相似文献   

13.
As an anode material for lithium‐ion batteries, titanium dioxide (TiO2) shows good gravimetric performance (336 mAh g?1 for LiTiO2) and excellent cyclability. To address the poor rate behavior, slow lithium‐ion (Li+) diffusion, and high irreversible capacity decay, TiO2 nanomaterials with tuned phase compositions and morphologies are being investigated. Here, a promising material is prepared that comprises a mesoporous “yolk–shell” spherical morphology in which the core is anatase TiO2 and the shell is TiO2(B). The preparation employs a NaCl‐assisted solvothermal process and the electrochemical results indicate that the mesoporous yolk–shell microspheres have high specific reversible capacity at moderate current (330.0 mAh g?1 at C/5), excellent rate performance (181.8 mAh g?1 at 40C), and impressive cyclability (98% capacity retention after 500 cycles). The superior properties are attributed to the TiO2(B) nanosheet shell, which provides additional active area to stabilize the pseudocapacity. In addition, the open mesoporous morphology improves diffusion of electrolyte throughout the electrode, thereby contributing directly to greatly improved rate capacity.  相似文献   

14.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

15.
Solid state lithium metal batteries are the most promising next‐generation power sources owing to their high energy density and safety. Solid polymer electrolytes (SPE) have gained wide attention due to the excellent flexibility, manufacturability, lightweight, and low‐cost processing. However, fatal drawbacks of the SPE such as the insufficient ionic conductivity and Li+ transference number at room temperature restrict their practical application. Here vertically aligned 2D sheets are demonstrated as an advanced filler for SPE with enhanced ionic conductivity, Li+ transference number, mechanical modulus, and electrochemical stability, using vermiculite nanosheets as an example. The vertically aligned vermiculite sheets (VAVS), prepared by the temperature gradient freezing, provide aligned, continuous, run‐through polymer‐filler interfaces after infiltrating with polyethylene oxide (PEO)‐based SPE. As a result, ionic conductivity as high as 1.89 × 10?4 S cm?1 at 25 °C is achieved with Li+ transference number close to 0.5. Along with their enhanced mechanical strength, Li|Li symmetric cells using VAVS–CSPE are stable over 1300 h with a low overpotential. LiFePO4 in all‐solid‐state lithium metal batteries with VAVS–CSPE could deliver a specific capacity of 167 mAh g?1 at 0.1 C at 35 °C and 82% capacity retention after 200 cycles at 0.5 C.  相似文献   

16.
Pseudocapacitors hold great promise as charge storage systems that combine battery‐level energy density and capacitor‐level power density. The utilization of pseudocapacitive material, however, is usually restricted to the surface due to poor electrode kinetics, leading to less accessible charge storage sites and limited capacitance. Here, tin oxide is successfully endowed with outstanding pseudocapacitance and fast electrode kinetics in a negative potential window by engineering oxygen‐deficient homo‐interfaces. The as‐prepared SnO2?x@SnO2?x electrode yields a specific capacitance of 376.6 F g?1 at the current density of 2.5 A g?1 and retains 327 F g?1 at a high current density of 80 A g?1. The theoretical calculation reveals that the oxygen defects are more favorable at homo‐interfaces than at the surface due to the lower defect formation energy. Meanwhile, as compared with the surface, the homo‐interface possesses more stable Li+ storage sites that are readily accessed by Li+ due to the occurrence of oxygen vacancies, enabling outstanding pseudocapacitance as well as high rate capability. This oxygen‐deficient homo‐interface design opens up new opportunities to develop high‐energy and power pseudocapacitors.  相似文献   

17.
Rational nanoscale surface engineering of electroactive nanoarchitecture is highly desirable, since it can both secure high surface‐controlled energy storage and sustain the structural integrity for long‐time and high‐rate cycling. Herein, ultrasmall MoS2 quantum dots (QDs) are exploited as surface sensitizers to boost the electrochemical properties of Li4Ti5O12 (LTO). The LTO/MoS2 composite is prepared by anchoring 2D LTO nanosheets with ultrasmall MoS2 QDs using a simple and effective assembly technique. Impressively, such 0D/2D heterostructure composites possess enhanced surface‐controlled Li/Na storage behavior. This unprecedented Li/Na storage process provides a LTO/MoS2 composite with outstanding Li/Na storage properties, such as high capacity and high‐rate capability as well as long‐term cycling stability. As anodes in Li‐ion batteries, the materials have a stable specific capacity of 170 mAhg?1 after 20 cycles and are able to retain 94.1% of this capacity after 1000 cycles, i.e., 160 mAhg?1, at a high rate of 10 C. Due to these impressice performance, the presented 0D/2D heterostructure has great potential in high‐performance LIBs and sodium‐ion batteries.  相似文献   

18.
Iron oxide is promising for use in aqueous energy storage devices due to the high capacity, but one of the most challenging problems is cycling instability within the large potential window that results from the complete quasi‐conversion reaction. Herein, a conformal surface coating strategy toward iron oxide via atomic layer deposition (ALD) is presented and an Fe3O4@TiO2 core–shell nanorod array anode is reported that exhibits remarkable cycling performance exceeding 30 000 times within a wide potential window in neutral lithium salt electrolyte. ALD offers a uniform and precisely controllable TiO2 shell that not only buffers the inner volume expansion of Fe3O4, but also contributes extra capacity through Li+ intercalation/de‐intercalation and helps to alleviate the water electrolysis. Furthermore, by pairing with a pseduocapacitive cathode of V2O3@carbon and using a hydrogel electrolyte of PVA‐LiCl, a unique flexible quasi‐solid‐state hybrid supercapacitor can be assembled. With a high voltage of 2.0 V, the device delivers high volumetric energy and power densities (2.23 mWh cm?3, 1090 mW cm?3), surpassing many recently reported flexible supercapacitors. This work highlights the importance of ALD conformal multifunctional shell to instable nanoarray electrodes in aqueous electrolytes and brings new opportunities to design advanced aqueous hybrid energy storage devices.  相似文献   

19.
FeF2 is considered a promising conversion compound for the positive electrode in lithium‐ion batteries due to its high thermodynamic reduction potential (2.66 V vs Li/Li+) and high theoretical specific capacity (571 mA h g?1). However, the sluggish reaction kinetics and rapid capacity decay caused by side reactions during cycling limit its practical application. Here, the fabrication of Ni‐supported 3D Al2O3‐coated FeF2 electrodes is presented, and it is shown that these structured electrodes significantly overcome these limitations. The electrodes are prepared by iron electrodeposition on a Ni support, followed by a facile fluorination process and Al2O3 coating by atomic layer deposition. The 3D FeF2 electrode delivers an initial discharge capacity of 380 mA h g?1 at a current density of 200 mA g?1 at room temperature. The 3D scaffold improves the reaction kinetics and enables a high specific capacity by providing an efficient electron pathway to the insulating FeF2 and short Li diffusion lengths. The Al2O3 coating significantly improves the cycle life, probably by preventing side reactions through limiting direct electrode–electrolyte contact. The fabrication method presented here can also be applied for synthesis of other metal fluoride materials on different 3D conductive templates.  相似文献   

20.
Exploring a universal strategy to implement the precise control of 2D nanomaterials in size and layer number is a big challenge for achieving ultrafast and stable Li/Na‐ion batteries. Herein, the confined synthesis of 1–3 layered MoS2 nanocrystals into 2D Ti3C2 interlayer nanospace with the help of electrostatic attraction and subsequent cetyltrimethyl ammonium bromide (CTAB) directed growth is reported. The MoS2 nanocrystals are tightly anchored into the interlayer by 2D confinement effect and strong Mo? C covalent bond. Impressively, the disappearance of Li+ intercalated into MoS2 reduction peak is successfully observed for the first time in the experiment, showing in a typical surface‐controlled charge storage behavior. The pseudocapacitance‐dominated contribution guarantees a much faster and more stable Li/Na storage performance. As predicted, this electrode exhibits a very high Li+ storage capacity of 340 mAh g?1 even at 20 A g?1 and a long cycle life (>1000 times). It also shows an excellent Na+ storage capacity of 310 mAh g?1 at 1 A g?1 with a 1600 times high‐rate cycling. Such impressive confined synthesis strategy can be extended to the precise control of other 2D nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号