首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The use of 2D materials to improve the capabilities of electronic devices is a promising strategy that has recently gained much interest in both academia and industry. However, while the research in 2D metallic and semiconducting materials is well established, detailed knowledge and applications of 2D insulators are still scarce. In this paper, the presence of resistive switching (RS) in multilayer hexagonal boron nitride (h‐BN) is studied using different electrode materials, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered. The devices show the coexistence of forming free bipolar and threshold‐type RS with low operation voltages down to 0.4 V, high current on/off ratio up to 106, and long retention times above 10 h, as well as low variability. The RS is driven by the grain boundaries (GBs) in the polycrystalline h‐BN stack, which allow the penetration of metallic ions from adjacent electrodes. This reaction can be boosted by the generation of B vacancies, which are more abundant at the GBs. To the best of our knowledge, h‐BN is the first 2D material showing the coexistence of bipolar and threshold RS, which may open the door to additional functionalities and applications.  相似文献   

2.
Vertical integration of hexagonal boron nitride (h‐BN) and graphene for the fabrication of vertical field‐effect transistors or tunneling diodes has stimulated intense interest recently due to the enhanced performance offered by combining an ultrathin dielectric with a semi‐metallic system. Wafer scale fabrication and processing of these heterostructures is needed to make large scale integrated circuitry. In this work, by using remote discharged, radio‐frequency plasma chemical vapor deposition, wafer scale, high quality few layer h‐BN films are successfully grown. By using few layer h‐BN films as top gate dielectric material, the plasmon energy of graphene can be tuned by electrostatic doping. An array of graphene/h‐BN vertically stacked micrometer‐sized disks is fabricated by lithography and transfer techniques, and infrared spectroscopy is used to observe the modes of tunable graphene plasmonic absorption as a function of the repeating (G/h‐BN)n units in the vertical stack. Interestingly, the plasmonic resonances can be tuned to higher frequencies with increasing layer thickness of the disks, showing that such vertical stacking provides a viable strategy to provide wide window tuning of the plasmons beyond the limitation of the monolayer.  相似文献   

3.
Solution‐processable thin‐film dielectrics represent an important material family for large‐area, fully‐printed electronics. Yet, in recent years, it has seen only limited development, and has mostly remained confined to pure polymers. Although it is possible to achieve excellent printability, these polymers have low (≈2–5) dielectric constants (εr). There have been recent attempts to use solution‐processed 2D hexagonal boron nitride (h‐BN) as an alternative. However, the deposited h‐BN flakes create porous thin‐films, compromising their mechanical integrity, substrate adhesion, and susceptibility to moisture. These challenges are addressed by developing a “one‐pot” formulation of polyurethane (PU)‐based inks with h‐BN nano‐fillers. The approach enables coating of pinhole‐free, flexible PU+h‐BN dielectric thin‐films. The h‐BN dispersion concentration is optimized with respect to exfoliation yield, optical transparency, and thin‐film uniformity. A maximum εr ≈ 7.57 is achieved, a two‐fold increase over pure PU, with only 0.7 vol% h‐BN in the dielectric thin‐film. A high optical transparency of ≈78.0% (≈0.65% variation) is measured across a 25 cm2 area for a 10 μm thick dielectric. The dielectric property of the composite is also consistent, with a measured areal capacitance variation of <8% across 64 printed capacitors. The formulation represents an optically transparent, flexible thin‐film, with enhanced dielectric constant for printed electronics.  相似文献   

4.
Boron and phosphorus doping of crystalline silicon using a borosilicate glass (BSG) layer from plasma‐enhanced chemical vapor deposition (PECVD) and phosphorus oxychloride diffusion, respectively, is investigated. More specifically, the simultaneous and interacting diffusion of both elements through the BSG layer into the silicon substrate is characterized in depth. We show that an overlying BSG layer does not prevent the formation of a phosphorus emitter in silicon substrates during phosphorus diffusion. In fact, a BSG layer can even enhance the uptake of phosphorus into a silicon substrate compared with a bare substrate. From the understanding of the joint diffusion of boron and phosphorus through a BSG layer into a silicon substrate, a model is developed to illustrate the correlation of the concentration‐dependent diffusivities and the emerging diffusion profiles of boron and phosphorus. Here, the in‐diffusion of the dopants during diverse doping processes is reproduced by the use of known concentration dependences of the diffusivities in an integrated model. The simulated processes include a BSG drive‐in step in an inert and in a phosphorus‐containing atmosphere. Based on these findings, a PECVD BSG/capping layer structure is developed, which forms three different n++−, n+− and p+−doped regions during one single high temperature process. Such engineered structure can be used to produce back contact solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Hexagonal boron nitride (BN) is electrically insulating and has a high in‐plane thermal conductivity. However, it has a very low cross‐plane thermal conductivity which limits its application for efficient heat dissipation. Here, large BN pellets with a quasi‐isotropic thermal conductivity are produced from BN nanosheets using a spark plasma sintering (SPS) technique. The BN pellets have the same thermal conductivity from both perpendicular and parallel directions to the pellet surface. The high quasi‐isotropic thermal conductivity of the bulk BN is attributed to a quasi‐isotropic structure formed during the SPS process in which the charged BN nanosheets form large sheets in all directions under two opposite forces of SPS compression and electric field. The pellet sintered at 2300 °C has a very high cross‐section thermal conductivity of 280 W m?1 K?1 (parallel to the SPS pressing direction) and exhibits superior heat dissipation performance due to more efficient heat transfer in the vertical direction.  相似文献   

6.
White‐light‐emitting electrochemical cells (WLECs) still represent a significant milestone, since only a few examples with moderate performances have been reported. Particularly, multiemissive white emitters are highly desired, as a paradigm to circumvent phase separation and voltage‐dependent emission color issues that are encountered following host:guest and multilayered approaches. Herein, the origin of the exclusive white ternary electroluminescent behavior of BN‐doped nanographenes with a B3N3 doping pattern (hexa‐perihexabenzoborazinocoronene) is rationalized, leading to one of the most efficient (≈3 cd A?1) and stable‐over‐days single‐component and single‐layered WLECs. To date, BN‐doped nanographenes have featured blue thermally activated delayed fluorescence (TADF). This doping pattern provides, however, white electroluminescence spanning the whole visible range (x/y CIE coordinates of 0.29–31/0.31–38 and average color rendering index (CRI) of 87) through a ternary emission involving fluorescence and thermally activated dual phosphorescence. This temperature‐dependent multiemissive mechanism is operative for both photo‐ and electroluminescence processes and holds over the device lifespan, regardless of the device architecture, active layer composition, and operating conditions. As such, this work represents a new stepping‐stone toward designing a new family of multiemissive white emitters based on BN‐doped nanographenes that realizes one of the best‐performing single‐component white‐emitting devices compared to the prior‐art.  相似文献   

7.
Molybdenum disulfide (MoS2) has been considered as a promising alternative to platinum (Pt)‐based catalyst for hydrogen evolution reaction (HER) due to its low cost and high catalytic activity. However, stable 2H phase of MoS2 (2H‐MoS2) exhibits low catalytic activity in HER due to the inert basal plane and S‐edge. Thus, to exploit the basal plane and S‐edge for additional electrocatalytic activity, a facile strategy is developed to prepare P‐doped 2H‐MoS2 film on conductive substrate via low‐temperature heat treatment. Due to the inherent difficulty of P‐doping into MoS2 crystal structure, oxygen (O)‐doping is utilized to aid the P‐doping process, as supported by the first‐principles calculations. Interestingly, P‐doping could dramatically reduce Mo valence charge, which results in the functionalization of the inert MoS2 basal plane and S‐edge. In agreement with simulation results, P‐doped 2H‐MoS2 electrode exhibits enhanced catalytic performance in H2 generation with low onset potential (130 mV) and small Tafel slope of 49 mV dec?1. The enhanced catalytic performance arises from the synergistic effect of the activated basal plane, S‐edge, and Mo‐edge sites, leading to favorable hydrogen adsorption energies. Most importantly, improved cyclic stability is achieved, which reveals chemically inert properties of P‐doped 2H‐MoS2 in acidic electrolyte.  相似文献   

8.
Fire retardant coatings have been proven effective at reducing the heat release rate (HRR) of structural materials during burning; yet effective methods for increasing the ignition temperature and delay time prior to burning are rarely reported. Herein, a strong, fire‐resistant wood structural material is developed by combining a densification treatment with an anisotropic thermally conductive flame‐retardant coating of hexagonal boron nitride (h‐BN) nanosheets to produce BN‐densified wood. The thermal management properties created by the BN coating provide fast, in‐plane thermal diffusion, slowing the conduction of heat through the densified wood, which improves the material's ignition properties. Compared with densified wood without the BN coating, a 41 °C enhancement in ignition temperature (Tig), a twofold increase in ignition delay time (tig), and a 25% decrease in the maximum HRR of BN‐densified wood can be achieved. As a proof of concept for scalability, the pieces of the BN‐densified wood are fabricated with a length larger than 25 cm, width greater than 15 cm, and thickness more than 7 mm. The improved thermal management, fire resistance, mechanical strength, and scalable production of BN‐densified wood position it as a promising structural material for safe and energy‐efficient buildings.  相似文献   

9.
Smart drug delivery systems with on‐demand drug release capability are rather attractive to realize highly specific cancer treatment. Herein, a novel light‐responsive drug delivery platform based on photosensitizer chlorin e6 (Ce6) doped mesoporous silica nanorods (CMSNRs) is developed for on‐demand light‐triggered drug release. In this design, CMSNRs are coated with bovine serum albumin (BSA) via a singlet oxygen (SO)‐sensitive bis‐(alkylthio)alkene (BATA) linker, and then modified with polyethylene glycol (PEG). The obtained CMSNR‐BATA‐BSA‐PEG, namely CMSNR‐B‐PEG, could act as a drug delivery carrier to load with either small drug molecules such as doxorubicin (DOX), or larger macromolecules such as cis‐Pt (IV) pre‐drug conjugated third generation dendrimer (G3‐Pt), both of which are sealed inside the mesoporous structure of nanorods by BSA coating. Upon 660 nm light irradiation with a rather low power density, CMSNRs with intrinsic Ce6 doping would generate SO to cleave BATA linker, inducing detachment of BSA‐PEG from the nanorod surface and thus triggering release of loaded DOX or G3‐Pt. As evidenced by both in vitro and in vivo experiments, such CMSNR‐B‐PEG with either DOX or G3‐Pt loading offers remarkable synergistic therapeutic effects in cancer treatment, owing to the on‐demand release of therapeutics specifically in the tumor under light irradiation.  相似文献   

10.
An organic compound with two triphenylamine moieties linked with binaphthyl at the 3,3′‐positions (2,2′‐dimethoxyl‐3,3′‐ di(phenyl‐4‐yl‐diphenyl‐amine)‐[1,1′]‐binaphthyl, TPA–BN–TPA) can be synthesized by Suzuki coupling. Amorphous and homogeneous films are obtained by either vacuum deposition or spin‐coating from solution in good solvents, while single crystals are grown in an appropriate polar solvent. X‐ray crystallography showed that a TPA–BN–TPA crystal is a multichannel structure containing solvent molecules in the channels. The intramolecular charge‐transfer state resulting from amino conjugation effects is observed by solvatochromic experiments. The high glass‐transition temperature (130 °C) and decomposition temperature (439 °C) of this material, in combination with its reversible oxidation property, make it a promising candidate as a hole‐transport material for light‐emitting diodes. With TPA–BN–TPA as the hole‐transporting layer in an indium tin oxide/TPA–BN–TPA/aluminum tris(8‐hydroxyquinoline)/Mg:Ag device, a brightness of about 10 100 cd m–2 at 15.6 V with a maximum efficiency of 3.85 cd A–1 is achieved, which is superior to a device with N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine as the hole‐transporting layer under the same conditions. Other devices with TPA–BN–TPA as the blue‐light‐emitting layer or host for a blue dye emitter are also studied.  相似文献   

11.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   

12.
A zeolitic‐imidazolate‐framework (ZIF) nanocrystal layer‐protected carbonization route is developed to prepare N‐doped nanoporous carbon/graphene nano‐sandwiches. The ZIF/graphene oxide/ZIF sandwich‐like structure with ultrasmall ZIF nanocrystals (i.e., ≈20 nm) fully covering the graphene oxide (GO) is prepared via a homogenous nucleation followed by a uniform deposition and confined growth process. The uniform coating of ZIF nanocrystals on the GO layer can effectively inhibit the agglomeration of GO during high‐temperature treatment (800 °C). After carbonization and acid etching, N‐doped nanoporous carbon/graphene nanosheets are formed, with a high specific surface area (1170 m2 g?1). These N‐doped nanoporous carbon/graphene nanosheets are used as the nonprecious metal electrocatalysts for oxygen reduction and exhibit a high onset potential (0.92 V vs reversible hydrogen electrode; RHE) and a large limiting current density (5.2 mA cm?2 at 0.60 V). To further increase the oxygen reduction performance, nanoporous Co‐Nx/carbon nanosheets are also prepared by using cobalt nitrate and zinc nitrate as cometal sources, which reveal higher onset potential (0.96 V) than both commercial Pt/C (0.94 V) and N‐doped nanoporous carbon/graphene nanosheets. Such nanoporous Co‐Nx/carbon nanosheets also exhibit good performance such as high activity, stability, and methanol tolerance in acidic media.  相似文献   

13.
We demonstrate enhanced hole injection and lowered driving voltage in vacuum‐deposited organic light‐emitting diodes (OLEDs) with a hole‐transport layer using the starburst amine 4,4′,4″‐tris(N,N‐diphenyl‐amino)triphenylamine (TDATA) p‐doped with a very strong acceptor, tetrafluoro‐tetracyano‐quinodimethane (F4‐TCNQ) by controlled coevaporation. The doping leads to high conductivity of doped TDATA layers and a high density of equilibrium charge carriers, which facilitates hole injection and transport. Moreover, multilayer OLEDs consisting of double hole‐transport layers of thick p‐doped TDATA and a thin triphenyl‐diamine (TPD) interlayer exhibit very low operating voltages.  相似文献   

14.
Developing low‐cost non‐precious metal catalysts for high‐performance oxygen reduction reaction (ORR) is highly desirable. Here a facile, in situ template synthesis of a MnO‐containing mesoporous nitrogen‐doped carbon (m‐N‐C) nanocomposite and its high electrocatalytic activity for a four‐electron ORR in alkaline solution are reported. The synthesis of the MnO‐m‐N‐C nanocomposite involves one‐pot hydrothermal synthesis of Mn3O4@polyaniline core/shell nanoparticles from a mixture containing aniline, Mn(NO3)2, and KMnO4, followed by heat treatment to produce N‐doped ultrathin graphitic carbon coated MnO hybrids and partial acid leaching of MnO. The as‐prepared MnO‐m‐N‐C composite catalyst exhibits high electrocatalytic activity and dominant four‐electron oxygen reduction pathway in 0.1 M KOH aqueous solution due to the synergetic effect between MnO and m‐N‐C. The pristine MnO shows little electrocatalytic activity and m‐N‐C alone exhibits a dominant two‐electron process for ORR. The MnO‐m‐N‐C composite catalyst also exhibits superior stability and methanol tolerance to a commercial Pt/C catalyst, making the composite a promising cathode catalyst for alkaline methanol fuel cell applications. The synergetic effect between MnO and N‐doped carbon described provides a new route to design advanced catalysts for energy conversion.  相似文献   

15.
Porous polymeric foams as dielectric layer for highly sensitive capacitive based pressure sensors have been extensively explored owing to their excellent flexibility and elasticity. Despite intensive efforts, most of previously reported porous polymer foams still suffer from difficulty in further lowering the attainable density limit of ≈0.1 g cm?3 while retaining high sensitivity and compressibility due to the limitations on existing fabrication techniques and materials. Herein, utilizing 3D interconnected networks of few‐layer hexagonal boron nitride foams (h‐BNFs) as supporting frameworks, lightweight and highly porous BN/polydimethylsiloxane composite foams (BNF@PDMS) with densities reaching as low as 15 mg cm?3 and permittivity close to that of air are fabricated. This is the lightest PDMS‐based foam reported to date. Owing to the synergistic effects between BN and PDMS, these lightweight composite foams possess excellent mechanical resilience, extremely high compressibility (up to 95% strain), good cyclic performance, and superelasticity. Being electrically nonconductive, the potential application of BNF@PDMS as a dielectric layer for capacitive sensors is further demonstrated. Remarkably, the as‐fabricated device can perform multiple sensing functions such as noncontact touch sensor, environmental monitoring sensor, and high sensitivity pressure sensor that can detect extremely low pressures of below 1 Pa.  相似文献   

16.
2D materials are promising to overcome the scaling limit of Si field‐effect transistors (FETs). However, the insulator/2D channel interface severely degrades the performance of 2D FETs, and the origin of the degradation remains largely unexplored. Here, the full energy spectra of the interface state densities (Dit) are presented for both n‐ and p‐ MoS2 FETs, based on the comprehensive and systematic studies, i.e., full rage of channel thickness and various gate stack structures with h‐BN as well as high‐k oxides. For n‐MoS2, Dit around the mid‐gap is drastically reduced to 5 × 1011 cm?2 eV?1 for the heterostructure FET with h‐BN from 5 × 1012 cm?2 eV?1 for the high‐k top‐gate. On the other hand, Dit remains high, ≈ 1013 cm?2 eV?1, even for the heterostructure FET for p‐MoS2. The systematic study elucidates that the strain induced externally through the substrate surface roughness and high‐k deposition process is the origin for the interface degradation on conduction band side, while sulfur‐vacancy‐induced defect states dominate the interface degradation on valance band side. The present understanding of the interface properties provides the key to further improving the performance of 2D FETs.  相似文献   

17.
Endocrine disruptors such as bisphenol A (BPA) are environmental pollutants that interfere with the body's endocrine system because of their structural similarity to natural and synthetic hormones. Due to their strong oxidizing potential to decompose such organic pollutants, colloidal metal oxide photocatalysts have attracted increasing attention for water detoxification. However, achieving both long‐term physical stability and high efficiency simultaneously with such photocatalytic systems poses many challenges. Here a layer‐by‐layer (LbL) deposition approach is reported for immobilizing TiO2 nanoparticles (NPs) on a porous support while maintaining a high catalytic efficiency for photochemical decomposition of BPA. Anatase TiO2 NPs ≈7 nm in diameter self‐assemble in consecutive layers with positively charged polyhedral oligomeric silsesquioxanes on a high surface area, porous electrospun polymer fiber mesh. The TiO2 LbL nanofibers decompose approximately 2.2 mg BPA per mg of TiO2 in 40 h of illumination (AM 1.5G illumination), maintaining first‐order kinetics with a rate constant (k) of 0.15 h?1 for over 40 h. Although the colloidal TiO2 NPs initially show significantly higher photocatalytic activity (k ≈ 0.84 h?1), the rate constant drops to k ≈ 0.07 h?1 after 4 h of operation, seemingly due to particle agglomeration. In the BPA solution treated with the multilayered TiO2 nanofibers for 40 h, the estrogenic activity, based on human breast cancer cell proliferation, is significantly lower than that in the BPA solution treated with colloidal TiO2 NPs under the same conditions. This study demonstrates that water‐based, electrostatic LbL deposition effectively immobilizes and stabilizes TiO2 NPs on electrospun polymer nanofibers for efficient extended photochemical water remediation.  相似文献   

18.
The current approaches used to fabricate hexagonal boron nitrides (h‐BN) from boron trioxide and urea always results in contamination of the h‐BN product with carbon/oxygen. Thus, discovering a facile way of mass producing high‐purity h‐BN remains a challenge. A simple yet highly efficient thermal treatment approach to large‐scale fabrication of nanoporous h‐BN with high yield, high purity, and high crystallinity is described using NaNH2 and NaBH4 as the oxygen‐ and carbon‐free precursors. The unique properties of inorganic metal salts, i.e., high melting point and strong electrostatic interaction with carbon substrates, render this strategy suitable for the production of homogeneous h‐BN/mesoporous carbon and h‐BN/carbon nanotube heterostructures of high crystallinity, high h‐BN dispersity, and with a strong interfacial effect. These unique features make them promising candidates for supercapacitor applications, resulting a significantly enhanced specific capacitance. This study provides new insight into the fabrication of high‐purity h‐BN and h‐BN‐based heterostructures thus expanding their application in the field of energy storage and transformation.  相似文献   

19.
Many material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond sheets (measuring up to 4 × 5 mm in planar area, and 300–600 nm in thickness) are removed from the substrate using mechanical exfoliation and then transferred to other substrates, including Si/SiO2 and graphene. The electronic properties of the resulting diamond nanosheets and their dependence on the free‐standing growth, the mechanical exfoliation and transfer processes, and ultimately on their composition are characterized. To validate this, a prototypical diamond nanosheet–graphene field effect transistor‐like (DNGfet) device is developed and its electronic transport properties are studied as a function of temperature. The resulting DNGfet device exhibits thermally activated transport (thermionic conductance) above 50 K. Below 50 K a transition to variable range hopping is observed. These findings demonstrate the first step towards a low‐temperature diamond‐based transistor.  相似文献   

20.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号