共查询到10条相似文献,搜索用时 74 毫秒
1.
目的 土地覆盖分类能为生态系统模型、水资源模型和气候模型等提供重要信息,遥感技术运用于土地覆盖分类具有诸多优势。作为区域性土地覆盖分类应用的重要数据源,Landsat 5/7的TM和ETM+等数据已逐渐失效,Landsat 8陆地成像仪(OLI)较TM和ETM+增加了新的特性,利用Landsat 8数据进行北京地区土地覆盖分类研究,探讨处理方法的适用性。方法 首先,确定研究区域内土地覆盖分类系统,并对Landsat 8多光谱数据进行预处理,包括大气校正、地形校正、影像拼接及裁剪;然后,利用灰度共生矩阵提取全色波段纹理信息,与多光谱数据进行融合;最后,使用支持向量机(SVM)进行分类,获得土地覆盖分类结果。结果 经过精度评价和分析发现,6S模型大气校正和C模型地形校正预处理提高了不同类别之间的可分性,多光谱数据结合全色波段纹理特征能有效提高部分地物的土地覆盖分类精度,总体精度提高2.8%。结论 相对于Landsat TM/ETM+数据,Landsat 8 OLI数据新增特性有利于土地覆盖分类精度的提高。本文方法适用于Landsat 8 OLI数据土地覆盖分类研究与应用,能够满足大区域土地覆盖分类应用需求。 相似文献
2.
结合纹理特征的SVM样本分层土地覆盖分类 总被引:1,自引:0,他引:1
支持向量机(SVM)分类在精度、泛化性、高维数据处理等方面都具有较强的优势,在遥感影像分类中也得到了广泛应用。由于遥感影像“同物异谱”和“异物同谱”现象的影响,结合纹理特征提高SVM分类精度已成为遥感应用研究的热点。但不同尺度的纹理特征突出的信息不一,在同一尺度上难以区分的地物在多尺度空间则更容易区分,因此,采用多尺度纹理特征进行SVM分类,并从分类样本和纹理特征的选取两个方面探讨SVM土地覆盖分类的方法。首先,以ALOS影像为例,通过灰度共生矩阵提取不同尺度、不同方向的几种纹理特征;然后在光谱分类结果基础上,借助地类特征曲线,选取有效的多尺度纹理特征,最后进行样本分层分类。样本分层分类是选取首层样本进行分类,再从“漏分和错分”地块中选取新样本加入到首层样本中,得到第二层样本并对整个影像进行分类;用同样的方法选出第三层样本或更高层样本进行分类,直到结果满意为止。结果表明:该方法比仅用光谱特征的SVM分类总精度提高了8.11%,Kappa系数增加了0.11。其中,纹理特征的引入使分类总精度提高了4.13%,且对纹理特征较明显的地类更有效;采用样本分层后的分类总精度进一步提高了3.98%,且各单一地类的精度也都有不同程度的提高。借助地类特征曲线选择合适的纹理特征具有一定的可行性,并且采用样本分层的方法能够提高SVM分类的精度。 相似文献
3.
基于卷积神经网络(Convolutional Neural Networks, CNN)和5种不同空间分辨率的遥感影像,对西宁市东部一区域开展土地覆被分类研究,旨在探索CNN在不同空间分辨率下进行影像分类的差异性和对不同地物的提取能力。为提高样本的选择效率,引入了窗口滑动方法进行辅助选样。研究表明5种不同空间分辨率影像的总体分类精度均达89%以上,Kappa系数达0.86以上,分类精度较高。在所涉及的分辨率尺度范围内,空间分辨率越高,CNN分类结果越精细,并能保持较高的分类精度,表明CNN更适合高空间分辨率影像分类;但同时影像空间分辨率越高,地物表现出较高的类内变异性和低类间差异性,分类精度有降低的趋势。相比较而言,SPOT 6影像的分类精度最高,同时窗口滑动是一种有效的样本辅助选择方法。研究对今后同类工作具有一定的借鉴意义。 相似文献
4.
以吉林一号视频07B星高分遥感影像为基础,采用卷积神经网络(CNN)对城区土地覆被进行精细分类,设置多组光谱变量集合,并与最大似然法、多层感知机和支持向量机分类方法进行对比,全面评估分析各方法对城区土地覆被信息提取的适用性及波谱特征对分类精度的影响。结果表明:CNN模型的分类精度最高,总体精度高于90%,相比其他方法提高幅度达12%以上,能够显著降低“椒盐”噪音;红边波段对所有方法总体分类精度贡献十分有限,而近红外波段对分类精度的提升较为明显;总体而言,红边和近红外波段对CNN分类精度影响较为微弱。深度学习应用于吉林一号高分遥感数据能获取高精度城区土地覆被分类图,可为城市土地资源配置,城市规划与管理提供重要的支撑。 相似文献
5.
6.
西宁和拉萨城市作为青藏高原人类活动的热点地区,其发展历程对青藏高原社会经济发展具有重要影响。研究基于遥感影像、城市规划图和历史地图等资料重建了西宁和拉萨城市1949基准年、1978基准年、1990年、2000年、2010年和2018年城市扩展及2000年以来城市不透水层和绿地空间组分数据,分析了1949基准年以来西宁和拉萨主城区城市扩展的时空特征,揭示了社会经济因素和政策因素对城市土地利用/覆盖变化的影响。研究结果表明:(1)新中国成立以来,西宁和拉萨主城区持续扩展,均呈现非线性的增长态势,城市土地面积分别从1949基准年的1.98 km2和1.10 km2增长到2018年的75.65 km2和76.04 km2;西宁主城区城市扩展呈现十字状的扩展态势,拉萨呈现出圈层外延式的扩展模式;(2)自2000年来,西宁和拉萨城市绿化水平显著提升。2000~2018年,西宁和拉萨城市不透水层面积分别从36.91 km2和21.56 km2增加到55.34 km 相似文献
7.
8.
Rapid urban expansion had a significant impact in land use/cover change along urban-rural gradient, and the increase of impervious construction land and the reduction of vegetation cover had induced and aggravated the urban heat island effect. Studying the impact of urban-rural gradient land cover change on urban heat island effect was significant for urban planning and construction, improving the comfort of human settlements and enhancing the function of urban ecological services. The surface temperature of Xi'an city was retrieved by mono-window algorithm based on Landsat images, and the thermal field intensity map was obtained by calculating the thermal field variation index, and the gradient land cover changes in urban and rural areas were analyzed with land use data. The results showed that: ①The urban heat island effect in Xi'an showed a trend of first increasing and then decreasing from 2000 to 2015. In 2000, the extremely strong heat island effect area accounted for 10.58% of the research area, and gradually increased to 16.14% in 2011, and then decreased to 9.00% in 2015. ②From 2000 to 2015, the area of construction land increased 412.76 km2 and the intensity of extremely strong heat island expanded year by year with the expansion of urban built-up areas. ③About 70% of the non-heat island effect areas were located on farmland and forest land, and the proportion of water area in the non-heat island effect was increasing year by year from 31% to 47%, which showed that the increase of vegetation and water area could effectively alleviate the urban heat island effect. 相似文献
9.
从第三十五届国际宇航联合会的空同遥感专业小组会议上可以看出,目前空间遥感的现状及未来发展前景。今后空间遥感将从具有单一遥感能力向具有综合遥感能力方面发展,不仅能对陆地,而且对海 相似文献
10.
基于Sentinel-1及 Landsat 8数据的黑河中游农田土壤水分估算 总被引:1,自引:0,他引:1
土壤水分是陆地表层系统中的关键变量。利用主动微波遥感,特别是合成孔径雷达(Synthetic Aperture Radar,SAR)的观测,在监测和估计表层土壤水分时空分布方面已开展了诸多研究。然而,SAR土壤水分反演仍存在诸多挑战,特别是地表粗糙度和植被的影响。因此,本文提出了一种结合主动微波和光学遥感的优化估计方案,旨在同步反演植被含水量、地表粗糙度和土壤水分。反演算法首先在水云模型的框架下对模型中的植被透过率因子(与植被含水量密切相关)采用3种不同的光学遥感指数——修正的土壤调节植被指数(Modified Soil Adjusted Vegetation Index,MSAVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和归一化水体指数(Normalized Difference Water Index,NDWI)进行参数化估计,用于校正植被层的散射贡献。在此基础上,构造基于SAR观测和Oh模型的代价函数,利用复型洗牌全局优化算法进行土壤水分和地表粗糙度的联合反演。采用Sentinel-1 SAR和Landsat 8多光谱数据在黑河中游开展了反演试验,并利用相应的地面观测数据对结果进行了验证。结果表明反演结果与地面观测具有良好的一致性,其中基于NDWI的植被含水量反演效果最佳,与地面观测比较,土壤水分决定系数(R 2)在0.7以上,均方根误差(RMSE)为0.073 m^ 3/m^ 3;植被含水量R 2大于0.9,RMSE为0.885 kg/m 2,表明该方法能够较准确地估计土壤水分。同时发现植被含水量的估计结果,以及植被透过率的参数化方案对土壤水分的反演精度有一定的影响,在未来的研究中需要进一步探索。 相似文献