首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于支持向量机和最小二乘支持向量机的入侵检测比较   总被引:2,自引:0,他引:2  
将支持向量机和最小二乘支持向量机用于入侵检测之中,利用主元分析对数据进行约简,然后使用SVM和 LS-SVM对数据进行训练和测试.基于KDDCUP'99做了三组对比实验,对支持向量机和最小二乘支持向量机的性能做了统计.实验结果表明,SVM比LS-SVM分类能力强,但是LS-SVM耗时较少.  相似文献   

2.
研究了基于混合核函数的最小二乘支持向量机(LS-SVM)的图像边缘检测技术,利用LS-SVM对图像像素邻域的灰度值进行了曲面拟合,通过混合核函数推导出了图像的梯度算子和零交叉算子,并结合梯度算子和零交叉算子实现了图像边缘定位。  相似文献   

3.
提出了一种基于主分量分析(PCA)和支持向量机(SVM)相结合的人脸检测方法。该方法首先利用计算复杂度较低的PCA粗分类器对输入图像遍历检测,滤除大部分非人脸窗口,再由SVM分类器进行精确判断,从而加快了检测过程。实验证明。本方法能够有效的检测出复杂背景下的人脸图像,并且处理时间比单纯使用SVM大大缩短。  相似文献   

4.
基于独立成分分析和核向量机的人脸识别   总被引:4,自引:4,他引:0  
提出利用独立成分分析提取人脸特征并用核向量机进行识别的方法。独立成分分析能更本质地描述图像特征,通过选择合适的特征个数达到较高的识别准确率。利用核向量机进行分类判决,可以快速地对大样本数据进行准确分类,产生较少的支持向量。实验证明了该方法的可行性和有效性,在ORL人脸数据库上达到了94.38%的准确率。  相似文献   

5.
为了解决最小二乘支持向量机模型稀疏性不足的问题,提出了一种约简核矩阵的LS-SVM稀疏化方法.按照空间两点的欧式距离寻找核矩阵中相近的行(列),并通过特定的规则进行合并,以减小核矩阵的规模,进而求得稀疏LS-SVM模型.以高斯径向基核函数为例,详细阐述了改进方法的实现步骤,并通过仿真表明了采用该方法求得的稀疏LS-SVM模型泛化能力良好.  相似文献   

6.
基于核主元分析和支持向量机的人脸识别   总被引:5,自引:1,他引:5  
核主元分析(KPCA,Kernel Principal Components Analysis)具有能较好地提取非线性特征的优势;支持向量机(SVM,Support Vector Machine)具有较好的非线性映射能力,且泛化能力强。结合核主元分析与支持向量机的特点,提出了一种基于核主元分析与支持向量机的人脸识别方法。该方法首先利用核主元分析对人脸图像进行特征提取,然后依据支持向量机与最近邻准则对所提取的核主元特征进行分类识别。基于ORL(Olivetti Research Laboratory)人脸数据库的实验结果表明了该方法的有效性。  相似文献   

7.
基于主元分析和支持向量机的异常检测*   总被引:1,自引:0,他引:1  
为了提高异常检测的效率,提出了一种基于主元分析和支持向量机的异常检测方法。基于主元分析对入侵数据进行约简,使用SVM对约简的数据进行训练,得到支持向量机实现异常检测。以KDDCUP 99数据源进行实验,先将数据从40维约简为15维,22维约简为5维,训练与检测的实验结果表明,该检测方法具有良好的准确度和泛化性能,训练时间和检测时间显著减少。  相似文献   

8.
针对虹膜识别过程中的特征提取及识别问题,提出了用独立成分分析提取虹膜特征,用核向量机进行识别的方法.从采集到的人眼图像中定位虹膜,并对其进行归一化处理和图像增强处理.用独立成分分析提取统计独立的特征,通过选择合适的特征个数可以达到较高的识别准确率.在得到虹膜特征编码后,用核向量机进行分类判决,核向量机是一种适合大规模数据集的快速支持向量机训练算法,并将结果与支持向量机的分类结果进行了对比.实验结果表明了该方法的可行性和有效性.  相似文献   

9.
基于核主元分析的支持向量机识别方法研究   总被引:2,自引:0,他引:2  
主元分析、核主元分析、支持向量机等方法在分类与识别中应用时都各有自己的优点,本文提出一种基于核主元分析的支持向量机识别方法,用该方法分别对ORL人脸库和iris数据集中的数据进行分类与识别,结果表明:如果调整好了核函数的参数,可以得到极高的识别率。  相似文献   

10.
基于尺度核函数的最小二乘支持向量机   总被引:1,自引:0,他引:1  
支持向量机的核函数一直是影响其学习效果的重要因素.本文基于小波分解理论和支持向量机核函数的条件,提出一种多维允许支持向量尺度核函数.该核函数不仅具有平移正交性,且可以以其正交性逼近二次可积空间上的任意曲线,从而提升支持向量机的泛化性能.在尺度函数作为支持向量核函数的基础之上,提出基于尺度核函数的最小二乘支持向量机(LS-SSVM).实验结果表明,LS-SSVM在同等条件下比传统支持向量机的学习精度更高,因而更适用于复杂函数的学习问题.  相似文献   

11.
一种基于降维的肤色特征提取和肤色检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文提出了一种综合多个颜色空间分量的肤色特征提取方法,并通过SVM分类器进行肤色和非肤色的分类,从而实现肤色检测。特征提取先后采用了PFA和KPCA算法。肤色检测的实质是肤色和非肤色分类问题。针对先前提取的特征,采用基于SVM分类器进行分类。实验结果表明,基于PFA、KPCA特征提取和SVM分类的肤色检测正确率可以达到87.76%,误判率仅为14.62%。  相似文献   

12.
为了对疲劳驾驶的脑电进行研究,本文收集数据并利用小波变换在实验数据中提取α波、β波、θ波和δ波这4种频段的均幅值和(α+β)/β、α/β、(δ+α)/(α+β)、(α+β)/θ共8项合成指标集成为脑电特征参数。通过KPCA提取贡献率90%以上的主元特征信息形成特征集合,并将特征信息输入最小二乘支持向量机(LSSVM),建立KPCA-LSSVM预测模型并对比其他4种模型试验,最终求得该模型平均正确率达到89.47%,通过实验表明了该实验的有效性及在数据处理速度上的优势。  相似文献   

13.
针对燃料乙醇发酵过程中关键生物参量(基质浓度、菌体浓度、乙醇浓度等)在线检测困难,离线化验滞后大,难以实现实时控制的问题,提出了一种基于核主元分析(KPCA)与最小二乘支持向量机(LSSVM)相结合的软测量建模方法。以关键生物参量中乙醇浓度的预测为例,首先,利用KPCA提取软测量输入数据空间中的非线性主元,然后利用LSSVM算法建立了乙醇浓度的软测量模型。仿真结果表明,与PCA-LSSVM建模方法相比,KPCA-LSSVM软测量模型的测量精度高、跟踪性能好、泛化能力强,能满足发酵过程中乙醇浓度的在线测量要求,是一种有效的软测量建模方法。  相似文献   

14.
KPCA方法过程研究与应用   总被引:1,自引:1,他引:1  
给出一种基于核函数的主成分分析方法,它主要用来解决大规模非线性数据的特征提取问题。文中给出了简化的协方差矩阵的计算方法与推导过程,还给出了KPCA方法的详细推导过程。最后使用核主成分分析的方法分别对线性与非线性分布的数据进行了分析,取得了比传统主成分分析方法更好的结果。  相似文献   

15.
排烟含氧量是评价燃烧过程好坏和锅炉优化运行的重要指标,也是调节最佳风煤比的主要依据。针对工业锅炉氧量计使用受限的问题,提出一种混合的软测量方法:。为了提高烟气含氧量的软测量预测精度,本文分析与烟气含氧量有关的锅炉运行变量,从中确定8个,并采用核主成分析法进行参数处理,整合冗余,降低维数。经处理后得到的6个主成分,其累计贡献率达95.522%,以此作为最小二乘支持向量机软测量模型的输入。在此基础上,通过划分网格来改进交叉实验法,进而优化最小二乘支持向量机的2个参数。经优化得到的误差参数γ和径向基核函数参数σ~2分别为90.3和239.6,模型具有较高的训练精度。最后对某循环流化床锅炉进行建模仿真,利用采集的数据,分别建立最小二乘支持向量机、核主成分分析的最小二乘支持向量机和BP神经网络3种模型。应用3种模型对烟气含氧量进行预测,并采用3个模型性能指标进行对比分析。结果:表明,基于核主成分分析的最小二乘支持向量机的工业锅炉烟气含氧量模型,在小样本条件下学习更加有效,建模采样过程更快,预测精度更高。该模型有助于实现工业锅炉烟气含氧量在线软测量。  相似文献   

16.
层次聚类LSSVM在模拟电路故障诊断中的应用   总被引:2,自引:0,他引:2  
文中借鉴层次聚类的思想,采用正向训练、反向测试的方法构造了层次聚类最小二乘支持向量机,并针对容差模拟电路的故障诊断问题,在利用核主元分析法提取其故障特征的基础上,采用所构造的层次聚类最小二乘支持向量机对模拟电路的软故障进行了诊断,并与常用的1对1、1对多算法进行比较,结果表明该方法简化了分类器的结构,缩短了训练测试时间,提高了故障识别率。  相似文献   

17.
对SVM的特征提取问题进行了研究,提出了KPLS-SVM组合回归建模方法.该方法在输入空间映射得到的高维特征空间中进行PLS特征提取后,再进行SVM回归,不仅保持了SVM良好的模型性能,并且兼具KPLS和SVM的优点.仿真和实验结果表明,该KPLS-SVM建模方法是正确且有效的,采用该方法构建的SVM模型,泛化性能明显优于没有特征提取的SVM.  相似文献   

18.
提出一种新的结合核主成分分析(Kernel Principal Component Analysis,KPCA)和遗传算法(Genetic Algo-rithm,GA)的支持向量机(Support Vector Machine,SVM)入侵检测模型。在新模型中,使用多层SVM分类器来判断网络行为是否为攻击行为,KPCA用于对SVM的输入数据进行预处理,以降低特征向量的维数和缩短训练时间,使用改进的核函数N-RBF来消除属性间差异所导致的噪声,GA算法用来优化SVM三个参数的选择。仿真实验表明,与其他检测模型相比,该模型具有更高的预测精度、更快的收敛速率和更好的泛化性能。  相似文献   

19.
基于DPCA与LSSVM的飞机发动机异常状态识别   总被引:1,自引:0,他引:1  
针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析 (Dynamic Principal Component Analysis, DPCA)和最小二乘支持向量机(Least Square Support Vector Machine, LSSVM)的飞机发动机润滑系统异常状态识别方法。首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别。以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。  相似文献   

20.
本文针对传统的增量学习算法无法处理后采集到的样本中含有新增特征的问题,设计适应样本特征维数增加的训练算法。在基于最小二乘支持向量机的基础上,提出了特征增量学习算法。该算法充分利用先前训练得到的分类器的结构参数,仅对新增特征采用最小二乘支持向量机进行学习。实验结果表明,该算法能够在保证分类精度的同时,有效效地提高训练速度并降低存储空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号