共查询到18条相似文献,搜索用时 71 毫秒
1.
针对传统的数据驱动方法偏最小二乘法(PLS)中存在的多模态数据故障检测效果不佳的问题,提出了一种新的故障检测方法——基于局部近邻标准化(LNS)的PLS(LNS-PLS)。首先,利用LNS方法对原始数据进行高斯化处理,在此基础上建立PLS的监控模型,确定T2和平方预测误差(SPE)的控制限;其次,对测试数据同样进行LNS标准化处理,再计算出测试数据的PLS监控指标来进行过程监视及故障检测,解决了PLS中无法处理多模态的问题。将所提方法应用于数值例子和青霉素生产过程,并将其测试结果与主成分分析(PCA)、K最近邻(KNN)、PLS等方法进行对比分析。实验结果表明,所提方法的故障检测效果优于PLS、KNN、PCA,该方法在分类及多模态过程故障检测方面有较高的准确性。 相似文献
2.
偏最小二乘(PLS)算法通常适用于稳定工况下的工业过程故障检测.在日趋复杂的工业过程中,过程数据通常不满足正态分布,存在非线性、动态、多模态等问题.针对多模态问题,已有大量模态区分方法可用,但这些方法都未考虑质量相关因素,因此并不适用于质量相关类算法.为此,针对质量相关类算法提出新的质量相关模态区分规则,该规则通过核模糊聚类对添加线性递增时间变量的数据在时间方向上进行初步的聚类,再通过质量相关指标进一步准确划分模态;同时,过程复杂化导致静态控制限不能满足故障检测的需求,现存的动态控制限适用范围具有一定的局限性,可通过改进动态控制限将其推广为广义动态综合控制限.实验中,先是基于两种非线性偏最小二乘模型将新方法应用于青霉素发酵过程故障检测中,极大减少了漏报率和误报率.最后,通过数值仿真实验验证了添加线性递增时间变量的合理性. 相似文献
3.
针对多模态间歇过程故障检测问题,本文提出一种基于局部保持投影–加权k近邻规则(LPP--Wk NN)的故障检测策略.首先,应用局部保持投影(LPP)方法将原始数据投影到低维主元子空间;接下来,在主元子空间中,应用样本第k近邻的局部近邻集确定每个样本的权重并计算权重统计量Dw;最后,应用核密度估计方法确定Dw控制限并进行故障检测.本文方法应用LPP对过程数据进行维数约减,既能够降低训练过程中离群点对模型的影响,又能够降低在线故障检测的计算复杂度.同时,加权k近邻规则(Wk NN)方法通过引入权重规则能够使得过程故障检测统计量分布具有单模态结构.相比传统的k NN统计量,本文引入的权重统计量具有更高的故障检测性能.通过数值例子和半导体蚀刻过程的仿真实验,并与主元分析(PCA), k NN, Wk NN, LPP--k NN等方法进行比较,实验结果验证了本文方法的有效性. 相似文献
4.
针对工业过程数据存在的非高斯和多模态特性,提出一种基于统计差分LPP的多模态间歇过程故障检测方法。首先将统计模量分析的方法应用到间歇过程训练数据集中,计算统计过程变量的均值和方差,将不等长的批次变成等长的统计量,保证统计模量近似服从高斯分布;然后运用差分算法使多模态变为单模态,最后运用LPP算法进行降维和特征提取,计算样本的T2统计量,并利用核密度估计确定控制限。对于新来的测试样本数据统计差分处理后,向LPP模型上进行投影,计算新数据的T2统计量并与控制限比较进行故障检测。最后通过半导体过程数据的仿真结果表明,该算法的故障检测效果最好,验证了所提方法的有效性。 相似文献
5.
针对过程数据的多模态和非线性的特征,提出了改进的局部近邻标准化和PPA结合的过程故障检测方法.首先寻找每个样本的第一近邻样本,再寻找第一近邻样本的局部前k近邻集,用近邻集的均值和标准差进行数据标准化,最后使用主多项式分析(PPA)对标准化处理后的数据建模,计算T2和SPE统计量,并确定控制限进行故障检测.主多项式分析使... 相似文献
6.
根据多模态工业生产过程的数据特点,提出基于时空近邻标准化和鲁棒自编码器(TSNS-RAE)的故障检测方法;TSNS处理数据时同时考虑了样本的时间近邻和空间近邻,可以消除数据动态性和多模态特征;相比于普通的自编码器,鲁棒自编码器提升了模型的抗噪性和鲁棒性,具有更好的提取非线性特征的能力;TSNS-RAE模型将原始数据空间分成模型空间和残差空间两部分,选择残差空间的SPE统计量作为监控统计量,通过数值案例和青霉素实验来验证TSNS-RAE的可行性。 相似文献
7.
针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新的数据集中应用DPCA方法确定T2和SPE控制限进行故障检测。LNS方法能够消除过程的多模态特征,使得标准化后数据近似服从多元高斯分布,且保持过程离群点偏离正常样本轨迹;而结合DPCA方法则能够提高对具有动态特性过程的监视性能。利用数值例子和青霉素发酵过程进行仿真,并将测试结果与主元分析法(PCA)、DPCA、K近邻故障检测(FD-KNN)等方法进行对比分析,验证了LNS-DPCA方法的有效性。 相似文献
8.
偏最小二乘(PLS)作为一种典型的多元统计分析方法被广泛用于多变量统计过程监测,通常要求数据满足高斯–马尔科夫定理.当数据存在多模态或过程变量非线性相关时,基于PLS方法的故障检测性能将受到影响.为此,本文提出一种基于PLS得分重构的故障检测方法(SR–PLS).首先,利用PLS将输入空间分解为质量相关空间与质量无关空间;其次,利用类k邻近规则(k NN)对当前得分向量进行重构,得到重构得分向量;最后利用重构得分构造统计量,由核密度估计(KDE)得到控制限,进行故障检测.本方法降低了变量间的非线性与数据多模态对过程故障检测的影响,提高了故障检测率.将所提方法应用于两个数值仿真例子与田纳西伊士曼过程(TEP),并与PLS,KPLS, LNS–PLS进行对比分析,证明该算法的优越性与有效性. 相似文献
9.
受市场需求主导,工业过程需要在多种工作模态下切换,数据往往呈现多模态复杂分布特性,研究多模态的故障检测技术对于保障工业过程的安全运行具有重要意义.为此,提出一种基于局部近邻标准化(LNS)和方向熵加权核熵成分分析(DEWKECA)的故障检测算法.利用LNS实现多模态数据的标准化,相比于全局标准化,LNS可以有效消除多模态特性;考虑到故障样本与正常样本在变化趋势上的差异,定义样本变化方向的信息熵为方向熵,用来衡量样本变化方向的无序程度,从而利用DEWKECA实现数据降维,可以更有效提取数据变化方向特征;考虑到多模态数据往往服从非高斯分布,采用局部离群因子(LOF)算法建立监控统计量,根据核密度估计确定其控制限.最后,通过数值例子及TE过程仿真验证所提出算法的有效性. 相似文献
10.
工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离;其次将近邻距离的平方和的均值作为样本的统计量D~2;最后,根据D~2的分布确定检测方法的控制限,当新样本的D~2大于控制限时,判定其为故障,否则为正常.标准距离使不同模态中样本间的近邻距离能够在同一尺度下度量,使得SD–kNN的D~2能够准确反映样本间的相似程度.进行了数值模拟过程和青霉素发酵过程故障检测实验. SD–kNN方法检测出了数值模拟过程的全部故障和青霉素过程95%以上的故障,相对于PCA, kPCA, FD–kNN等方法具有更高的故障检测率. SD–kNN继承了FD–kNN对一般多模态过程的故障检测能力,还能够对方差差异显著的多模态过程进行故障检测. 相似文献
11.
针对多阶段过程数据具有多中心和各工序结构不同的特征问题,提出了一种基于改进的局部近邻标准化和k近邻的故障检测(ILNS-kNN)方法。首先寻找样本的前k个近邻样本的前K局部近邻集;其次使用局部近邻集的均值和标准差来标准化样本,获得标准样本;最后在标准样本集上计算样本的累积近邻距离作为检测指标进行故障检测。改进的局部近邻标准化(ILNS)将各阶段数据的中心平移到原点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的单阶段数据。进行了青霉素发酵过程故障检测实验。实验结果表明ILNS-kNN方法对所设置的六类故障的检测率高于97%。ILNS-kNN方法在保持对一般多阶段过程故障的检测能力的同时,能够实现对阶段方差差异显著的多阶段过程故障的检测,从而更好地保证多阶段生产过程的安全性和产品的高质量。 相似文献
12.
针对间歇过程控制策略优化问题,提出一种基于递推非线性部分最小二乘(NLPLS)模型的批到批优化方法:首先采用非线性部分最小二乘方法建立软测量模型,根据过程的控制操作变量对最后的产品质量进行预测。然后基于该模型,计算出最优控制策略并在实际装置上实施。为了解决模型和对象失配并且存在未知扰动的问题,采用递推算法,在每个批次结束后根据新得到的数据和旧模型参数对原模型进行更新。然后,重新求解最优控制策略并在对象上实施。通常经过几个批次,控制策略将收敛到一个满意解。在一个间歇过程上进行仿真研究,同时与基于PLS模型的批到批优化算法进行对比,结果表明采用NLPLS模型取得了优于采用PLS模型的结果。 相似文献
13.
针对油田抽油机生产数据存在强非线性和强耦合性, 导致故障诊断困难的问题, 本文提出一种全相关动态
核偏最小二乘(FCDKPLS)故障诊断方法. 首先, 构建抽油机生产数据自回归模型, 反映数据变量间的动态特性; 其
次, 分析了KPLS算法中输出变量与输入变量残差子空间的相关性, 为此, 在输出模型上构建一个辅助矩阵, 从而表
征输入变量与输出变量的全相关性, 建立输入变量和输出变量之间更直接的联系. 最后, 将提出的全相关动态偏最
小二乘方法应用于抽油机过程故障诊断, 实验结果表明本文提出方法的有效性. 相似文献
14.
针对间歇过程的多工况和非线性特征,提出一种基于近邻特征标准化(Nearst Neighborhood Feature Standardization,NNFS)样本的核特征量(Kernel Feature Statistics,KFS)故障检测方法。首先,将间歇过程数据按批次方向展开构成二维建模样本,计算每个样本的局部近邻,采用近邻特征实现标准化,提取多工况批次之间的正常偏差,克服Z-score标准化将多工况过程数据看作一个整体而造成的不准确问题。其次,通过核方法将经过标准化后的样本映射到高维空间,在核空间建立监视模型,计算特征量,并提出采用方差分析(variance,VAR)方法确定核参数,通过核密度估计法确定统计控制限。最后,在青霉素发酵过程进行仿真研究,通过比较表明了所提方法的有效性。 相似文献
15.
高效偏最小二乘(EPLS)作为偏最小二乘(PLS)的扩展算法之一, 在质量相关故障检测中取得了良好的应用
效果. 然而, 研究发现当系统中存在一些与产品质量无关的信息时会导致EPLS的检测率降低, 影响工业生产安全及
效益. 同时, 传统的基于贡献图的故障诊断方法在无故障时输入变量会对故障检测指标的贡献值不均等, 从而影响
故障诊断效果. 针对上述问题, 本文提出了一种改进高效偏最小二乘(IEPLS)的质量相关故障诊断方法. 所提方法首
先用正常数据建立IEPLS算法模型, 利用获得的模型参数对过程变量进行空间分解. 然后在分解后的空间中定义局
部信息增量均值和局部动态阈值, 结合故障判据进行故障检测. 当故障发生后, 利用每个变量的新息矩阵计算对故
障总体的新息贡献率, 根据各个变量新息贡献率大小实现对故障变量的定位. 最后, 使用田纳西伊士曼过程(TEP)对
算法性能进行了验证. 相似文献
16.
针对化工间歇生产过程的多模态问题,为了提高故障检测性能,将滑动窗口技术与局部离群因子(LOF)算法相结合,提出了一种新的动态多向局部离群因子(Dynamic Multiway Local Outlier Factor,DMLOF)用于工业过程在线故障检测的方法。首先将间歇过程数据展开成二维数据,利用滑动窗口技术分别在时间片内运用局部离群因子算法计算LOF统计量,并利用核密度估计(KDF)确定控制限。其次,对于新来数据标准化处理后分别在相应窗口内投影,确定新数据的LOF统计量并与控制限比较进行故障检测。最后通过青霉素发酵过程的仿真实验结果验证了该算法的有效性。 相似文献
17.
针对多工况过程数据的批次不等长、中心漂移、工况结构不同等特点,提出基于统计模量和局部近邻标准化的局部离群因子故障检测方法(SP-LNS-LOF)。首先计算每个训练样本的统计模量;然后使用局部近邻集标准化统计模量,得到标准样本;最后计算标准化样本的局部离群因子,并将其作为检测指标,将局部离群因子的分位点作为检测控制限,当在线样本的局部离群因子大于检测控制限时,判定其为故障;否则为正常。统计模量提取过程的主要信息,且消除批次不等长的影响;局部近邻标准化克服工况中心漂移和工况结构不同的困难;局部离群因子度量样本的相似度,实现故障样本和正常样本的分离。进行了半导体蚀刻过程故障检测仿真实验,实验结果表明SP-LNS-LOF检测出了全部21个故障,比主元分析(PCA)、核主元分析(kPCA)、基于k近邻的故障检测(FD-kNN)、局部离群因子(LOF)方法具有更高的检测率。理论分析和仿真实验说明SP-LNS-LOF方法适用于多工况过程故障检测,具有较高的故障检测效率,能保证多工况生产过程的安全性。 相似文献