首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曾纪军  高占远  阮冬 《材料导报》2021,35(z1):198-205
水泥基材料在建筑领域应用广泛,但其存在抗弯强度低、抗裂性和韧性差等缺点,因此改善水泥基材料性能一直是建筑材料领域研究的热点之一.氧化石墨烯(GO)是在石墨烯基面和边缘修饰了含氧官能团的一种二维衍生石墨烯材料,具有蜂窝状的结构形貌,亲水性、分散性和反应活性好.将GO加入水泥基材料中,可促进花状形貌晶体的形成,并加速水化进程的成核速度,使其形成致密的交联结构,进而细化水泥浆体的空隙,有效降低孔隙率,从而增强水泥基材料的力学性能,但流动性等有所降低.因此研究人员主要从微观作用机理、静态力学性能及耐久性等方面开展了深入研究,并取得了丰硕的成果.GO自身较大比表面积的结构性质致使水泥基复合材料流变性差,利用硅灰(SF)和氧化石墨烯包覆硅灰(GOSF)等外加剂对GO进行改性,从而提高GO水泥浆体的流动性.基于微观结构作用机理,对比不同GO掺量、试件尺寸、水灰比下的抗压强度和抗弯强度的增长率,分析GO水泥基复合材料的力学性能的增强机理.GO对水泥基材料抗压、抗拉、抗弯强度增长率存在较大差异,其中抗弯强度提高幅度最大.GO对硅酸盐水泥力学性能的提高程度较磷酸镁钾水泥更为显著.对于动态力学性能,不同应变率下裂纹扩展路径存在差异,在高应变率下GO的增强效应更为显著.水泥基材料工作环境中各类离子化合物及酸碱度对其基体有消极的影响,GO对其耐久性有明显的提高作用.本文对近年来GO水泥基复合材料的研究状况进行梳理,分析其微观结构作用机理、流动性、力学性能及耐久性等,阐述了目前国内外的研究状况及存在的问题,并展望了GO水泥基复合材料未来的发展趋势.  相似文献   

2.
以氧化石墨烯为增强体,环氧树脂为基体,酚醛胺T-31为固化剂,制备了氧化石墨烯/环氧树脂复合材料。对该复合材料进行了FT-IR和热失重分析,测定了其邵氏硬度。结果表明,复合材料中产生了酯键,但该键的强度较弱,氧化石墨烯与环氧树脂间的结合强度不高;与纯环氧树脂相比,复合材料的热稳定性有所提高,随氧化石墨烯含量增加,T_(max)先增大后减小,并在0.5%处达最大值;与纯环氧树脂相比,复合材料的邵氏硬度有所提高,随氧化石墨烯含量增加,邵氏硬度先增大后减小,并在0.3%处达最大值。  相似文献   

3.
近年来,石墨烯改性聚氨酯纳米复合材料因其优异的综合性能而备受关注。在聚氨酯基体中添加石墨烯或其衍生物可显著提升聚氨酯的物理机械、热学、电磁学等性能,满足聚合物复合材料高性能和多功能的特殊要求。首先介绍了石墨烯的功能化改性方法,包括共价键改性和非共价键改性。随后介绍了石墨烯/聚氨酯纳米复合材料的制备工艺,包括原位聚合、溶液共混、熔融共混、水相(胶乳)共混等。综述了石墨烯/聚氨酯纳米复合材料在物理机械性能、导电性能、介电性能、导热性能、气体阻隔性能、阻燃性能、电磁屏蔽性能和防腐蚀性能等方面的最新研究进展。最后,对石墨烯/聚氨酯纳米复合材料面临的挑战和发展前景进行了展望。  相似文献   

4.
石墨烯是一种具有单层蜂窝状二维网格结构的新型材料,具有优异的力学、化学性能。氧化石墨烯(GO)作为氧化-还原法制备石墨烯的中间体,具有较高的比表面积以及石墨烯所不具备的丰富官能团。鉴于官能团的存在,GO具有优良的化学修饰性能,以此可制备性能更高的或具备新性能的GO/聚合物复合材料。文中综述了氧化石墨烯的结构、性能及制备方法,主要介绍了制备GO的Hummers法,比较了GO/聚合物复合材料的不同制备方法,列举了复合材料的性能特点,最后对GO复合材料制备方法的发展和GO/聚合物复合材料的应用前景进行了展望。  相似文献   

5.
氧化石墨烯(GO)是一种石墨烯衍生物,具有独特的二维纳米片层结构,表面含有大量羟基、环氧基、羧基和羰基等含氧官基团,加之具有超大的比表面积、良好的亲水性和生物相容性等特性,使其作为纳米组分更易与聚合物、无机物及小分子等物质作用制备复合材料。综述了近年来GO复合材料在吸附材料、分离材料、电极材料、传感器材料、界面改性、光电热材料、高性能材料及催化等领域的研究,并从可持续发展的角度对要拓宽和实现GO复合材料的大规模工业化应用存在的问题进行了总结及展望。  相似文献   

6.
采用水合肼(HH)为还原剂制备还原氧化石墨烯(rGO),以rGO作为增强填料,丁基胶乳为基体,通过改进的超声胶乳混合和原位还原工艺,制备了力学性能优异的丁基橡胶(IIR)/rGO复合材料。结果表明,在IIR基体中添加较低含量rGO时,rGO显示完全剥离和均匀分散的状态;rGO由于具有较高的比表面积,可以提高其与IIR基体之间的界面相互作用,使得IIR/rGO复合材料的拉伸强度和断裂伸长率共同增大;对比纯IIR,IIR/rGO复合材料的储能模量增加、损耗因子减小,具有更好的阻尼性能和热稳定性。  相似文献   

7.
综述了近年来氧化石墨烯/壳聚糖新型复合材料的研究进展,侧重介绍了该材料的常用制备方法及其对重金属离子和有机染料的吸附情况,讨论了该复合材料的脱附再生性能,指出了目前研究中尚存在的问题,并对未来的研究工作提出了一些建议。  相似文献   

8.
综述了近年来氧化石墨烯/壳聚糖新型复合材料的研究进展,侧重介绍了该材料的常用制备方法及其对重金属离子和有机染料的吸附情况,讨论了该复合材料的脱附再生性能,指出了目前研究中尚存在的问题,并对未来的研究工作提出了一些建议。  相似文献   

9.
通过溶液共混法和溶剂挥发法制备了氧化石墨烯/海藻酸钠(GO/SA)复合材料,通过XRD,IR,吸水性实验和拉伸实验对其结构和性能进行了研究。结果表明,GO的添加可显著提高SA基体的力学性能。当GO含量为7%(wt,质量分数,下同)时,与SA基体相比,GO/SA复合材料的干态和湿态力学性能分别提高了42.5%和212%。吸水性实验表明,GO/SA复合材料的吸水率在GO含量为3%时出现最大值。  相似文献   

10.
氧化石墨烯是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团.简单介绍了氧化石墨烯的制备方法,重点阐述了氧化石墨烯复合材料的研究进展,包括聚合物类复合材料以及无机物类复合材料的合成方法、性能以及应用领域,展望了氧化石墨烯的制备及其复合材料今后的研究方向,提出少引入或者不引入杂离子的新型绿色环保的制备方法是氧化石墨烯制备的发展方向,氧化石墨烯的表面改性成为另一个研究重点.  相似文献   

11.
近年来,石墨烯已成为世界各国学者研究的热点。由石墨粉先制备氧化石墨烯进而制备石墨烯成为了石墨烯最重要的制备方法。本文综述了氧化石墨烯制备石墨烯的主要方法:化学法、热法、微波法、电化学法、水热法、碱法等,并对各方法的优缺点进行了阐述,最后对石墨烯的未来进行了展望。  相似文献   

12.
纳米银-氧化石墨烯是一种新型抗菌复合材料,具有比表面积大、无耐药性、广谱抗菌和对哺乳动物细胞毒性低的特点,在生物医用材料和抗菌材料上有着潜在应用。主要介绍了纳米银-氧化石墨烯复合材料的制备方法,总结了纳米银-氧化石墨烯复合材料的杀菌机理,提出了提高其杀菌性能的方法,对于石墨烯及其衍生物复合材料的研究具有借鉴意义。  相似文献   

13.
用改良的Hummers法制备出氧化石墨烯(GO),再通过溶液共混,逐步升温固化制备得到GO/呋喃树脂复合材料。利用FTIR、XRD和SEM对GO/呋喃树脂复合材料的微观结构和形貌进行表征,同时对其黏度、玻璃化转变温度、热分解温度、残炭率及硬度进行了检测。结果表明,GO较均匀地分散于呋喃树脂基体中,且两者界面相容性较好。GO/呋喃树脂复合材料的热性能和力学性能相对于纯树脂都有一定的提高。与纯呋喃树脂相比,当GO的添加量为0.3wt%时,GO/呋喃树脂复合材料的玻璃化转变温度提高了36℃,热失重5%时的温度提高了16℃;当GO的添加量为0.1wt%时,GO/呋喃树脂复合材料的残炭率从50.7%提高到53.9%,邵氏硬度从90提高到97。  相似文献   

14.
氧化石墨烯/壳聚糖复合材料是近几年发展的一种新型生物复合材料,具有独特的力学性能、吸附性能、电化学性能以及抗菌性能等。本文综述了近几年来氧化石墨烯/壳聚糖复合材料的研究进展,简单介绍了该复合材料的制备方法,详细阐述了该复合材料在高机械强度材料、废水处理、电化学传感器、生物医学材料等领域的应用研究,最后对氧化石墨烯/壳聚糖复合材料在低成本、大规模制备,复合材料的结构性质以及在新领域的应用等方面进行了展望。  相似文献   

15.
16.
17.
采用硅烷偶联剂KH570对氧化石墨烯进行改性得到硅烷化氧化石墨烯(KGO),再通过溶液共混法制备了KGO/呋喃树脂复合材料。利用红外光谱、X射线衍射和扫描电子显微镜等方法对KGO和KGO/呋喃树脂复合材料的微观结构和相态进行了表征,并研究了KGO对呋喃树脂的热性能和力学性能的影响。结果表明,KH570成功地接枝到GO分子上得到KGO,且KGO在呋喃树脂基体中具有良好的分散性。KGO/呋喃树脂复合材料的热性能得到显著提高,其弹性模量和拉伸强度较纯呋喃树脂分别增加了384.9 MPa和6.3 MPa。  相似文献   

18.
水热法一步合成ZnS/还原氧化石墨烯(ZnS/RGO)复合材料,通过XRD、FTIR、Raman、SEM分析溶剂(乙醇、水)对ZnS/RGO复合材料形貌和结构的影响。结果表明,以乙醇为溶剂制备的ZnS颗粒尺寸小、均匀分散在石墨烯片层上,在形成ZnS纳米颗粒的同时将氧化石墨烯(GO)还原成石墨烯。对亚甲基蓝(MB)的光催化结果显示,ZnS/RGO复合材料具有优异的光催化性能,其光催化速率是纯ZnS颗粒的3.7倍,石墨烯作为优良光生电子的传输通道和收集体能够降低光生电子-空穴对的重新结合率,极大提高了ZnS/RGO复合材料的光催化性能。   相似文献   

19.
通过溶剂超声剥离法制备氧化石墨烯/双马来酰亚胺(BMI)树脂纳米复合材料。采用X射线衍射(XRD)、透射电镜(TEM)和热重分析(TGA)对纳米复合材料进行表征,并对其力学性能进行研究。结果表明,在N,N-二甲基甲酰胺中超声能有效地将异氰酸苯酯改性的氧化石墨剥离成氧化石墨烯薄片;这种纳米复合材料比BMI树脂具有更好的力学性能和耐热性能,当氧化石墨烯含量为基体树脂的1%时,其拉伸强度、弯曲强度和冲击强度分别为87.7 MPa、142.1MPa、15.9 kJ/m2,当氧化石墨烯含量为1.25%时,其1000℃时的残炭率达41.3%。  相似文献   

20.
以1,4-双(4-氨基-2-三氟甲基苯氧基)苯(6FAPB)和3,3',4,4'-二苯醚四酸二酐(ODPA)为合成聚酰亚胺(PI)的单体,首先采用原位氨基化方法使氧化石墨烯(GO)与6FAPB反应转变为原位氨基化GO,再与ODPA和剩余的6FAPB发生聚合反应得到原位氨基化GO/聚酰胺酸(PAA)溶液。涂膜后,经热酰亚胺化制备出GO质量分数分别为0.05wt%、0.1wt%、0.3wt%、0.5wt%和1.0wt%的原位氨基化GO/PI复合材料膜。利用FTIR、XPS、XRD、UV-vis、TGA、TMA、SEM、拉伸性能测试及接触角测试对原位氨基化GO/PI复合材料的结构和性能进行表征。结果表明,原位氨基化使GO以化学键与PI大分子链连接,有利于GO在复合材料基体中的稳定和均匀分散。XRD结果表明,所得到的原位氨基化GO/PI复合材料膜均为无定型结构。随GO质量分数增加,原位氨基化GO/PI复合材料薄膜的光学透明性急剧降低,但力学性能和热稳定性有一定提高。当GO的质量分数为1.0wt%时,原位氨基化GO/PI复合材料的拉伸强度由64 MPa增加到83 MPa,杨氏模量由1.67 GPa提高到2.10 GPa,10%热失重温度由593℃增加到597℃,玻璃化转变温度变化不大。由于热酰亚胺化后GO表面的大部分含氧官能团消失,原位氨基化GO/PI复合材料膜的吸水率由0.86%降低至0.58%,水接触角由72.5°增加到77.8°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号