首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of single-nucleotide polymorphisms is a major focus of current genomics research. We demonstrate the discrimination of DNA mismatches using an elegantly simple microcantilever-based optical deflection assay, without the need for external labeling. Gold-coated silicon AFM cantilevers were functionalized with thiolated 20- or 25-mer probe DNA oligonucleotides and exposed to target oligonucleotides of varying sequence in static and flow conditions. Hybridization of 10-mer complementary target oligonucleotides resulted in net positive deflection, while hybridization with targets containing one or two internal mismatches resulted in net negative deflection. Mismatched targets produced a stable and measurable signal when only a four-base pair stretch was complementary to the probe sequence. This technique is readily adaptable to a high-throughput array format and provides a distinct positive/negative signal for easy interpretation of oligonucleotide hybridization.  相似文献   

2.
The detection of a single-nucleotide mismatch in unlabeled duplex DNA by electrochemical methods is presented. Impedance spectroscopy is used to characterize a perfect duplex monolayer and three DNA monolayers differing in the position of the mismatch. The monolayers were studied as B-DNA (normal duplex DNA) and after conversion to M-DNA (a metalated duplex). Modeling of the impedance data to an equivalent circuit provides parameters that are useful in discriminating the four monolayer configurations. The resistance to charge transfer, R(CT), was lower for all duplexes after conversion to M-DNA. Contrary to expectations, R(CT) was also found to decrease for duplexes containing a mismatch. However, R(CT) was found to be diagnostic for mismatch detection. In particular, the difference in R(CT) between B- and M-DNA (deltaR(CT)) decreased from 190(22) omega.cm(2) for a perfectly matched duplex to 95(20), 30(20), and 85(20) omega.cm(2) for a mismatch at the top (distal), middle, and bottom (proximal) positions of the monolayer with respect to the gold surface. Further, a method to form loosely packed single-stranded (ss)-DNA monolayers by duplex dehybridization that is able to rehybridize to target strands is presented. Rehybridization efficiencies were in the range of 40-70%. Under incomplete hybridization conditions, the R(CT) was the same for matched and mismatched duplexes under B-DNA conditions. However, deltaR(CT) between B- and M-DNA, under incomplete hybridization, still provided a distinction. The deltaR(CT) for a perfect duplex was 76(12) omega.cm(2), whereas a mismatch in the middle of the sequence yielded a deltaR(CT) value of 30(15) omega.cm(2). The detection limit was measured and the impedance methodology reliably detected single DNA base pair mismatches at concentrations as low as 100 pM.  相似文献   

3.
Li X  Lee JS  Kraatz HB 《Analytical chemistry》2006,78(17):6096-6101
Gold electrode arrays with electrode diameters of 10 mum were used for the detection of eight single-nucleotide mismatches in unlabeled and prehybridized DNA by electrochemical impedance spectroscopy (EIS). Because of the differences in the electrical properties of films of duplex DNA (normal duplex DNA in B-form) in the presence and absence of Zn(2+) at pH > or = 8.6, Randles equivalent circuits were employed to evaluate the EIS results. The difference in the charge-transfer resistance (DeltaR(CT)) between B-DNA (absence of Zn2+ at pH > or = 8.6) and M-DNA (presence of Zn2+ at pH > or = 8.6) allows unequivocal detection of all eight single-nucleotide mismatches within a 20-mer DNA sequence. After dehybridization/rehybridization with target DNA, DeltaR(CT) allows the discrimination of single-nucleotide mismatches with concentrations of the target strand as low as 10 fM. Although the presence of protein impurities (bovine serum albumin, 10 microg/mL) interferes with the detection of the target strand (1 pM detection limit), the presence of nontarget DNA (calf thymus DNA, 10(-8) M) does not interfere, and the detection limit for recognition of the target strand remains at 10 fM.  相似文献   

4.
Wang Y  Li C  Li X  Li Y  Kraatz HB 《Analytical chemistry》2008,80(6):2255-2260
An unlabeled hairpin-DNA probe was used for the detection of eight single-nucleotide mismatches by electrochemical impedance spectroscopy (EIS). Upon hybridization of the target strand with the hairpin DNA probe, the stem-loop structure is opened and forms a duplex DNA. Accordingly, the film thickness is increased, which causes differences in the electrical properties of the film before and after hybridization. Randles equivalent circuits were employed to evaluate the EIS result. The differences in the charge-transfer resistance DeltaR(CT) between hairpin DNA (before hybridization) and duplex DNA (after hybridization) shows the consequence of a large structural rearrangement from hairpin to duplex. If a single-nucleotide mismatch is present in the center of the duplex, the difference in charge-transfer resistance DeltaR(CT) between B-DNA in the absence and presence of Zn(2+) allows the unequivocal detection of all eight single-nucleotide mismatches. The detection limit was measured, and DeltaR(CT) allows the discrimination of a single-nucleotide mismatch with the concentration of the target strand as low as 10 pM.  相似文献   

5.
The development of a chip-based sensor array composed of individually addressable agarose microbeads has been demonstrated for the rapid detection of DNA oligonucleotides. Here, a "plug and play" approach allows for the simple incorporation of various biotinylated DNA capture probes into the bead-microreactors, which are derivatized in each case with avidin docking sites. The DNA capture probe containing microbeads are selectively arranged in micromachined cavities localized on silicon wafers. The microcavities possess trans-wafer openings, which allow for both fluid flow through the microreactors/analysis chambers and optical access to the chemically sensitive microbeads. Collectively, these features allow the identification and quantitation of target DNA analytes to occur in near real time using fluorescence changes that accompany binding of the target sample. The unique three-dimensional microenvironment within the agarose bead and the microfluidics capabilities of the chip structure afford a fully integrated package that fosters rapid analyses of solutions containing complex mixtures of DNA oligomers. These analyses can be completed at room temperature through the use of appropriate hybridization buffers. For applications requiring analysis of < or = 10(2) different DNA sequences, the hybridization times and point mutation selectivity factors exhibited by this bead array method exceed in many respects the operational characteristics of the commonly utilized planar DNA chip technologies. The power and utility of this microbead array DNA detection methodology is demonstrated here for the analysis of fluids containing a variety of similar 18-base oligonucleotides. Hybridization times on the order of minutes with point mutation selectivity factors greater than 10000 and limit of detection values of approximately 10(-13) M are obtained readily with this microbead array system.  相似文献   

6.
Protein-DNA sequence-specific interaction plays an essential role in many biological processes. Here we immobilized a series of double-stranded DNA probes on an agarose coated slide to investigate the binding affinity of NF-kappaB p50 homodimer to the single-nucleotide mismatches (G<-->A or T<-->C) of the 10 base pair (bp) protein binding sites. The results demonstrated that the nucleotides at different positions contribute differently to the p50p50/DNA binding interaction. Within the 10 bp binding sites, the 5tG or 6cA mismatch has less effect on the protein-DNA binding affinity. Even the 5tG mismatch may have the ability to enhance the protein-DNA interaction (5t/w = 1.07). On the other hand, the 7cA or 10tG mismatch blocked the protein-DNA interaction more significantly than other six single-nucleotide mismatches. (7c/W = 0.37, 10t/W = 0.35). It also indicated that the duplex DNA probes immobilized on the agarose-coated surface were apt to be recognized by DNA-binding proteins, and this method would provide a reliable method for exploring the binding affinities of DNA-binding proteins with a larger number of DNA targets.  相似文献   

7.
8.
MutS-mediated detection of DNA mismatches using atomic force microscopy   总被引:1,自引:0,他引:1  
Sun HB  Yokota H 《Analytical chemistry》2000,72(14):3138-3141
We have developed an atomic force microscopy-based method for detecting DNA base-pair mismatches using MutS protein isolated from E. coli. MutS is a biological sensor and a locator of DNA base-pair mismatches. It binds specifically to a mismatched DNA base pair and initiates a process of DNA repair. To test the possibility of visually detecting mismatched base pairs by atomic force microscopy, we prepared DNA templates approximately 500 bp in length consisting of a single or multiple base-pair mismatches. We demonstrate that MutS binding sites on individual DNA molecules were readily detectable by atomic force microscopy and that the observed positions were in good agreement with the predicted sites of base-pair mismatches at a few-nanometer resolution. The technique described here is rapid and sensitive and is expected to be useful in screening mutations and DNA polymorphisms.  相似文献   

9.
Here, we describe a new fluorescence polarization aptamer assay (FPAA) strategy which is based on the use of the single-stranded DNA binding (SSB) protein from Escherichia coli as a strong FP signal enhancer tool. This approach relied on the unique ability of the SSB protein to bind the nucleic acid aptamer in its free state but not in its target-bound folded one. Such a feature was exploited by using the antiadenosine (Ade)-DNA aptamer (Apt-A) as a model functional nucleic acid. Two fluorophores (fluorescein and Texas Red) were introduced into different sites of Apt-A to design a dozen fluorescent tracers. In the absence of the Ade target, the binding of the labeled aptamers to SSB governed a very high fluorescence anisotropy increase (in the 0.130-0.200 range) as the consequence of (i) the large global diffusion difference between the free and SSB-bound tracers and (ii) the restricted movement of the dye in the SSB-bound state. When the analyte was introduced into the reaction system, the formation of the folded tertiary structure of the Ade-Apt-A complex triggered the release of the labeled nucleic acids from the protein, leading to a strong decrease in the fluorescence anisotropy. The key factors involved in the fluorescence anisotropy change were considered through the development of a competitive displacement model, and the optimal tracer candidate was selected for the Ade assay under buffer and realistic (diluted human serum) conditions. The SSB-assisted principle was found to operate also with another aptamer system, i.e., the antiargininamide DNA aptamer, and a different biosensing configuration, i.e., the sandwich-like design, suggesting the broad usefulness of the present approach. This sensing platform allowed generation of a fluorescence anisotropy signal for aptamer probes which did not operate under the direct format and greatly improved the assay response relative to that of the most previously reported small target FPAA.  相似文献   

10.
Liu CH  Li ZP  Du BA  Duan XR  Wang YC 《Analytical chemistry》2006,78(11):3738-3744
A new nanoparticle-based chemiluminescent (CL) method has been developed for the ultrasensitive detection of DNA hybridization. The assay relies on a sandwich-type DNA hybridization in which the DNA targets are first hybridized to the captured oligonucleotide probes immobilized on polystyrene microwells and then the silver nanoparticles modified with alkylthiol-capped oligonucleotides are used as probes to monitor the presence of the specific target DNA. After being anchored on the hybrids, silver nanoparticles are dissolved to Ag+ in HNO3 solution and sensitively determined by a coupling CL reaction system (Ag+-Mn2+-K2S2O8-H3PO4-luminol). The combination of the remarkable sensitivity of the CL method with the large number of Ag+ released from each hybrid allows the detection of specific sequence DNA targets at levels as low as 5 fM. The sensitivity increases 6 orders of magnitude greater than that of the gold nanoparticle-based colorimetric method and is comparable to that of surface-enhanced Raman spectroscopy, which is one of the most sensitive detection approaches available to the nanoparticle-based detection for DNA hybridization. Moreover, the perfectly complementary DNA targets and the single-base mismatched DNA strands can be evidently differentiated through controlling the temperature, which indicates that the proposed CL assay offers great promise for single-nucleotide polymorphism analysis.  相似文献   

11.
We report two cDNA microarray-based applications of DNA-nanocrystal conjugates, single-nucleotide polymorphism (SNP) and multiallele detections, using a commercial scanner and two sets of nanocrystals with orthogonal emissions. We focus on SNP mutation detection in the human p53 tumor suppressor gene, which has been found to be mutated in more than 50% of the known human cancers. DNA-nanocrystal conjugates are able to detect both SNP and single-base deletion at room temperature within minutes, with true-to-false signal ratios above 10. We also demonstrate microarray-based multiallele detection, using hybridization of multicolor nanocrystals conjugated to two sequences specific for the hepatitis B and hepatitis C virus, two common viral pathogens that inflict more than 10% of the population in the developing countries worldwide. The simultaneous detection of multiple genetic markers with microarrays and DNA-nanocrystal conjugates has no precedent and suggests the possibility of detecting an even greater number of bacterial or viral pathogens simultaneously.  相似文献   

12.
Single DNA molecules labeled with nanoparticles can be detected by blockades of ionic current as they are translocated through a nanopipette tip formed by a pulled glass capillary. The nanopipette detection technique can provide not only tools for detection and identification of single DNA and protein molecules but also deeper insight and understanding of stochastic interactions of various biomolecules with their environment.  相似文献   

13.
Microelectrode arrays having eight 10-microm-diameter gold microelectrodes arranged on a gold-covered Si chip were designed and characterized. The chips prove useful for the detection of single-nucleotide mismatches in unlabeled and prehybridized DNA by electrochemical impedance spectroscopy.  相似文献   

14.
Thin films of N,N′-bis-(3-Naphthyl)-N,N′-biphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), tris-(8-hydroxyquinoline)-aluminum (Alq3) and their blends prepared by spin-coating process were investigated. Experimental results revealed that the NPB films prepared by spin-coating process have smoother surface than that of Alq3, which was attributed to their different molecular structures. Organic light-emitting devices (OLEDs) with emitting layer prepared by spin-coating the blends of NPB and Alq3 exhibited a maximum luminance and a current efficiency over 10,000 cd/m2 and 3.8 cd/A respectively, and when 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-[l]benzopyrano[6,7,8-ij]quinolizin-11-one was doped in, a current efficiency of 8 cd/A can be obtained. Comparative device performance to the vapor-deposited OLEDs suggested that solution-process could be an alternative route for the fabrication of OLEDs based on Alq3.  相似文献   

15.
Aptamers that bind small molecules can serve as basic biosensing platforms. Evaluation of the binding constant between an aptamer and a small molecule helps to determine the effectiveness of the aptamer-based sensors. Binding constants are often measured by a series of experiments with varying ligand or aptamer concentrations. Such experiments are time-consuming, material nonprudent, and prone to low reproducibility. Here, we use laser tweezers to determine the dissociation constant for aptamer-ligand interactions at the single-molecule level from only one ligand concentration. Using an adenosine 5'-triphosphate disodium salt (ATP) binding aptamer as an example, we have observed that the mechanical stabilities of aptamers bound with ATP are higher than those without a ligand. Comparison of the change in free energy of unfolding (ΔG(unfold)) between these two aptamers yields a ΔG of 33 ± 4 kJ/mol for the binding. By applying a Hess-like cycle at room temperature, we obtained a dissociation constant (K(d)) of 2.0 ± 0.2 μM, a value consistent with the K(d) obtained from our equilibrated capillary electrophoresis (CE) (2.4 ± 0.4 μM) and close to that determined by affinity chromatography in the literature (6 ± 3 μM). We anticipate that our laser tweezers and CE methodologies may be used to more conveniently evaluate the binding between receptors and ligands and also serve as analytical tools for force-based biosensing.  相似文献   

16.
One of the most promising techniques for typing of multiple single-nucleotide polymorphism (SNP) is detection of single base extension primers (SBE) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We present a new MALDI-TOF MS protocol for typing of multiple SNPs in a single reaction. Biotin-labeled ddNTPs were used in the SBE reaction and solid phase-bound monomeric avidin was used as capturing/purification scheme allowing the exclusive release of the SBE products under gentle conditions using 5% triethylamine. We dubbed this method monomeric avidin triethylamine purification. The biotin-labeled ddNTPs contained linkers with different masses ensuring a clear separation of the alleles even for SBE primers with a mass of 10 300 Da. Furthermore, only 25-350 fmol of SBE primers were necessary in order to obtain reproducible MALDI-TOF spectra. Similar signal intensities were obtained in the 5500-10 300 m/z mass range by increasing the concentration of the longer SBE primers in the reaction. To validate the technique, 17 Y-chromosome SNPs were analyzed in 200 males. The precision and accuracy of the mass determination were analyzed by parametric statistic, and the potential use of MALDI-TOF MS for SNP typing is discussed.  相似文献   

17.
Cai S  Lau C  Lu J 《Analytical chemistry》2011,83(15):5844-5850
Base stacking is employed in an entirely new type of sensing platform for the simple and robust detection of protein. Only in the presence of protein, the aptamer DNA can hybridize stably with the capture DNA to form a stem-loop structure due to the enhancement of base stacking. This leads to a strong chemiluminescence emission for simple protein detection. With the use of a platelet-derived growth factor as a model, a fM detection limit was obtained with a dynamic range that spanned 4 orders of magnitude. Upon modification, the approach presented herein was also extended to detect other types of targets including Hg(2+) ion and adenosine and also other types of labels such as fluorescence nanogold. We believe such advancements will represent a significant step toward improved diagnostics and more personalized medical treatment and environmental monitoring.  相似文献   

18.
A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative T06 as they passed through the approximately 2 micrometer diameter focused laser beam. Amplified photoelectron pulses from the photomultiplier are grouped into bins of 360-450 micros in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. Statistical analyses showed that (i) the number of M13 molecules counted versus concentration was linear with slope = 1, (ii) the average burst duration was consistent with the expected transit time of a single molecule through the laser beam, and (iii) the number of detected molecules was consistent with single molecule detection. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The autocorrelation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of approximately 100 DNA molecules/band or better.  相似文献   

19.
赵建文  只金芳 《功能材料》2007,38(A05):1998-2001
研制了基于氧化锌纳米棒阵列的高稳定性和高特异性DNA荧光传感器.首先在纳米金刚石表面制备一层择优取向生长的氧化锌纳米棒,然后通过共缩聚方法在氧化锌表面修饰一层带氨基的硅层.用SEM和XPS对其进行了表征.通过非共价键或共价键方式把探针DNA固定在氧化锌和氨基修饰的氧化锌表面.并对荧光标记DNA进行了检测。实验结果表明共价固定方法比非共价固定方法有更好的特异性。此外,共价固定方法有好的稳定性和较高的灵敏度.  相似文献   

20.
We report a sensitive, label-free method for detecting single-stranded DNA and discriminating between single nucleotide polymorphisms (SNPs) using arrays of silicon photonic microring resonators. In only a 10 min assay, DNA is detected at subpicomole levels with a dynamic range of 3 orders of magnitude. Following quantitation, sequence discrimination with single nucleotide resolution is achieved isothermally by monitoring the dissociation kinetics of the duplex in real-time using an array of SNP-specific capture probes. By leveraging the capabilities of the microring resonator platform, we successfully generate multiplexed arrays to quickly screen for the presence and identity of SNPs and show the robustness of this methodology by analyzing multiple target sequences of varying GC content. Furthermore, we show that this technique can be used to distinguish both homozygote and heterozygote alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号