首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
在聚苯硫醚(PPS)树脂基体中引入聚酰胺66(PA66),随着PA66含量增加,PPS/PA66共混物的拉伸强度和弯曲强度逐渐下降,结合PPS/PA66共混物的相形貌分析,提出了通过玻璃纤维(GF)的引入,制备具有互锁结构的PPS/PA66/GF三元体系复合材料,达到同时提高复合材料的强度、刚度及韧性的目的。分别考察了短玻璃纤维(SGF)和中长玻璃纤维(LGF)增强PPS/PA66的综合性能。结果表明,GF的引入显著提高了共混物的力学性能,同时,PPS/PA66/SGF和PPS/PA66/LGF复合材料的扫描电子显微镜和动态力学性能分析都表明共混物内部形成了一个高度互锁的结构。  相似文献   

2.
用玻璃纤维(GF)对聚对苯二甲酰葵二胺(PA10T)进行改性得到PA10T/GF复合材料,通过控制熔融共混过程中GF的长度制备短GF增强PA10T(PA10T/SGF)复合材料和长GF增强PA10T(PA10T/LGF)复合材料。采用人工加速老化实验,研究热氧老化对PA10T/GF复合材料力学性能的影响,通过扫描电子显微镜(SEM)对PA10T/GF复合材料的冲击断面以及表面形貌进行分析,并预测了PA10T/GF复合材料的使用寿命。结果表明,PA10T/LGF复合材料的拉伸、弯曲强度以及缺口冲击强度较PA10T/SGF复合材料的高;在240℃下热氧老化50 d后,与PA10T/LGF复合材料相比,PA10T/SGF复合材料具有更好的耐老化性能;SEM分析表明,PA10T/GF复合材料的热氧老化机理主要是由于PA10T树脂的降解所引起的PA10T与GF界面作用的削弱;而通过寿命预测发现当使用温度为150℃时,PA10T/LGF和PA10T/SGF复合材料的使用寿命分别为101 d和86 d,在温度低于172℃时,PA10T/LGF复合材料比PA10T/SGF复合材料具有更长的使用寿命。  相似文献   

3.
研究以聚丙烯接枝马来酸酐(PP-g-MAH)和聚烯烃弹性体接枝马来酸酐(POE-g-MAH)为界面相容剂的长玻璃纤维增强尼龙6(LGF/PA 6)复合材料的力学性能,并与短玻璃纤维增强尼龙6(SGF/PA 6)复合材料的力学性能进行对比。结果表明:LGF/PA 6复合材料的拉伸强度、弯曲强度和弯曲模量均随着玻璃纤维含量的增加呈直线上升趋势,玻璃纤维质量分数达到40%时,增强效果十分显著;在添加相同含量的玻璃纤维时,LGF/PA 6复合材料的拉伸强度、弯曲强度、弯曲模量低于SGF/PA 6复合材料;2种复合材料的冲击强度均随着玻璃纤维含量的增加呈非线性增加,当添加相同含量的玻璃纤维时,LGF/PA 6复合材料的冲击强度高于SGF/PA 6复合材料;两种界面相容剂均改善了玻璃纤维与PA 6的界面性能,显著提高了复合材料的冲击强度,其中添加PP-g-MAH的LGF/PA 6复合材料的冲击强度的提高高于添加POE-g-MAH的,但拉伸强度和弯曲强度均有不同程度降低,其中添加POE-g-MAH的LGF/PA 6复合材料的拉伸强度、弯曲强度和弯曲模量下降得较为明显。  相似文献   

4.
采用熔融共混工艺和熔融浸渍分别制备了短玻璃纤维增强聚苯硫醚复合材料(PPS/SGF)和长玻璃纤维增强聚苯硫醚(PPS/LGF)复合材料,并对复合材料的力学性能和耐热性能进行了对比分析。研究结果表明,在玻璃纤维质量分数为30%时,PPS/SGF和PPS/LGF复合材料的拉伸强度分别为110 MPa和122 MPa;弯曲强度分别为175 MPa和208 MPa;弯曲弹性模量分别为8 GPa和9 GPa;缺口冲击强度和无缺口冲击强度分别为7.7,11.9 kJ/m2和31,37 kJ/m2。PPS/LGF复合材料的拉伸强度、弯曲强度、弯曲弹性模量、缺口冲击强度和无缺口冲击强度相较于PPS/SGF复合材料分别提高了11.0%,18.9%,11.3%,54.5%和19.4%。PPS/SGF和PPS/LGF复合材料的热变形温度分别达到250℃和275℃,PPS/LGF复合材料的热变形温度高于PPS/SGF复合材料热变形温度10%。  相似文献   

5.
研究了160℃条件下不同热氧老化时间对未添加抗氧剂和添加抗氧剂的长玻璃纤维(LGF)增强聚酰胺(PA)6(PA 6/LGF)复合材料力学性能、热稳定性、结晶度及表面形貌的影响,并采用热重分析,差示扫描量热法分析和扫描电子显微镜观察对PA 6/LGF复合材料进行了表征。结果表明:PA 6基体分子链的断裂、降解以及LGF与PA 6基体的脱黏导致了PA 6/LGF复合材料宏观力学性能、熔融温度、结晶温度、结晶度以及热稳定性的下降。添加抗氧剂的PA 6/LGF复合材料拉伸强度保持率为83.9%,而未添加抗氧剂的复合材料则为76.8%。添加抗氧剂能使PA 6/LGF复合材料具有相对优异的力学性能保持率。  相似文献   

6.
耐水解玻璃纤维增强尼龙66的制备及性能研究   总被引:2,自引:2,他引:0  
制备了长玻璃纤维(LGF)和短玻璃纤维(SGF)增强尼龙66(PA66),考察了GF、GF分散剂、耐水解改性剂(MPP)对增强PA66性能的影响。结果表明,选择SGF可获得较好力学性能和表面质量的增强PA66;随着SGF含量的增加,材料的拉伸强度、弯曲强度有大幅度的提高,冲击强度则先升高后降低;GF分散剂的加入改善了材料的表面质量;MPP的加入使材料的耐水解性有明显提高。  相似文献   

7.
以聚丙烯(PP)树脂为基体,玻璃纤维(GF)为增强材料,通过特制的浸渍设备制备长玻璃纤维(LGF)增强PP复合材料PP-LGF。考察了GF的含量、PP树脂的熔体流动速率以及表面极性剂(HT-17)含量对复合材料力学性能和黏结性能的影响。结果表明,复合材料的力学性能随GF含量的增加而增大,且基体树脂的流动性越好,复合材料力学性能越优异;添加表面极性剂能大幅度提高复合材料黏结性能,当其添加的质量分数为3%时,LGF质量分数40%的复合材料的表面张力为48mN/m,制品的剪切强度为1.65kJ/m2,界面破坏形式为80%胶内聚破坏,复合材料的综合性能满足全塑尾门要求。  相似文献   

8.
采用熔体浸渍技术制备了长玻璃纤维母料(LGF/PP-g-MAH/PP)增强聚丙烯(PP)复合材料(LGF/PP)。通过双螺杆挤出机制备了同等配比的短玻纤增强聚丙烯(SGF/PP)复合材料。研究了LGF含量、环氧树脂(EP)和固化剂(2E4MZ)对LGF/PP复合材料的力学性能影响。结果表明:当LGF质量分数为35%~40%时,LGF/PP的综合力学性能最好,且明显优于同样组成的SGF/PP复合材料。EP和含固化剂(2E4MZ)的EP对LGF/PP复合材料的力学性能提高有一定的作用。SEM照片分析表明:EP的加入能改善玻纤与聚丙烯基体的界面粘接。  相似文献   

9.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/长玻璃纤维(PA6/SMA/LGF)复合材料,利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了LGF含量对PA6/SMA/LGF复合材料熔融结晶行为、热性能及力学性能的影响。结果表明:随着LGF含量的增加,PA6/SMA/LGF复合材料的结晶温度、结晶度以及熔融焓均先升高再降低,而且复合材料的最大分解温度较纯PA6显著提高;另外,随着LGF含量的增加,PA6/SMA/LGF复合材料的热性能及力学性能均明显改善,其中当LGF含量为27%时,复合材料的热变形温度、弯曲强度、弯曲模量、拉伸强度和冲击强度分别增至206.0℃、227.8 MPa、7 335 MPa、180.6 MPa和18.7 kJ/m2。  相似文献   

10.
采用玻璃纤维(GF)及马来酸酐接枝苯乙烯-(乙烯-丁烯)-苯乙烯嵌段共聚物( MAH-g-SEBS)对尼龙(PA)66进行改性,并对复合材料的力学性能和微观结构进行了分析测试.结果表明,GF有效地提高了PA66的力学性能;MAH-g-SEBS的加入可以改善PA66/GF的界面状况,使GF和PA66紧密结合,增强了复合材料的韧性;GF和MAH-g-SEBS的添加,大大地降低了PA66的熔体流动速率,挤出加工时MAH-g-SEBS可以带动GF在基体树脂中流动,从而使GF更好地分散在PA66中.  相似文献   

11.
利用双螺杆挤出机制备了玻纤阻燃增强回收聚酰胺6(PA6)系列复合材料,探讨了红磷母粒(P)、氢氧化镁[Mg(OH)2]、三聚氰胺尿酸盐(MCA)、硼酸锌(ZnBO3)、增韧剂乙烯辛烯共聚物接枝马来酸酐(POE-g-MAH)对阻燃增强回收PA6力学性能及灼热丝温度的影响,采用力学测试方法、灼热丝试验仪研究了回收PA6复合材料的力学性能和灼热丝温度。结果表明:在阻燃增强回收PA6体系中,用P、MCA复配效果最好,当质量比为2/1的P/MCA和POE-g-MAH加入量(质量分数)分别为2%和5%时,材料的拉伸强度为123.6 MPa,缺口冲击强度为10 kJ/m2,1.6 mm阻燃等级为V-0,灼热丝温度达到810℃,满足电子电气对材料高灼热丝温度的要求。  相似文献   

12.
阐述了玻璃纤维增强尼龙66在增韧改性、阻燃改性、耐溶剂改性、耐磨改性、界面改性、复合改性和制备工艺改进等方面的研究进展。指出玻璃纤维增强尼龙66目前常用的增韧方法是与弹性体和高韧性聚烯烃共混,而阻燃改性的有效手段是添加微胶囊化红磷和P-N型阻燃剂。  相似文献   

13.
通过DSC分析及粘度和力学性能测试研究了海因环氧树脂/甲基六氢苯二酸酐/2-乙基-4-甲基咪唑体系的粘度特性,固化反应动力学,浇铸体及碳纤维增强拉挤成型复合材料的力学性能。结果表明,该体系在50℃下,15 h内粘度<500 mPa.s,可以满足拉挤工艺要求。其碳纤维复合材料的玻璃化温度达到206℃以上,剪切强度达到80 MPa,耐热性和力学性能良好。  相似文献   

14.
Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on block‐on‐ring sliding wear tester. The results showed that 20–30 vol % GF greatly increases the mechanical properties of PA66/PPS blend. When GF content is 20 vol %, the friction coefficient of composite is the lowest (0.35), which is decreased by 47% in comparison with the unfilled blend. The wear volume of the GF‐reinforced PA66/PPS blend composite decreases with the increase of GF content. However, the wear‐resistance is not apparently improved by the addition of GF in the experimental range for comparison with unfilled PA66/PPS blend. The worn surface and the transfer film on the counterface were examined by scanning electron microscopy (SEM). The observations revealed that the friction coefficient of composite depends on the formation and development of a transfer film. The wear mechanism involves polymer matrix wear and fiber wear. The former consists of melting wear and plastic deformation of the matrix, while the latter includes fiber sliding wear, cracking, rupturing, and pulverizing. The contributions of the matrix wear and the fiber wear determine the ultimate wear volume of PA66/PPS/GF composite. In addition, the abrasive action caused by the ruptured glass fiber is also a very important factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 523–529, 2006  相似文献   

15.
In order to use the glass fiber reinforced polyphenylene sulfide composites (GF/PPS) in high temperature environments, thermal aging performance of two kinds of commercial grade PPS composites, reinforced by 40% glass fiber, PPS-G40 HM and 1140L4, in thermal aging temperature of 250°C was compared by tensile strength, oxidized layer, color, crystallization and melting behavior. The results showed that tensile strength of GF/PPS composites is significantly decreased with increasing of aging time below 200 h and the tensile strength of aged PPS-G40 HM is higher than that of aged 1140L4. The thickness of dark color area is increased with increasing of aging time. The thickness of oxidized layer of 1140L4 is thinner than that of PPS-G40 HM. However, the color of oxidized layer of PPS-G40 HM is lighter than that of 1140L4. The recrystallization in thermal aging results in the formation of crystal with higher melting point and increased melting temperature of GF/PPS composites. It is found that addition of epoxy resin can increase the initial mechanical property and improve the thermal aging performance of GF/PPS composites. A novel modified GF/PPS composite with higher thermal aging properties was obtained.  相似文献   

16.
基于单取向纤维增强复合材料的力学性能计算模型,借助于纤维取向分布函数及坐标转换,建立了三维取向短纤维增强复合材料弹性模量的数值计算模型。按该模型对短纤维增强树脂基复合材料的弹性模量进行计算,将其结果与同类材料的实验结果比较验证。结果表明,该模型的预测具有较好的准确性。  相似文献   

17.
利用熔融共混法制备了玻璃纤维(GF)增强聚苯硫醚(PPS)复合材料.采用毛细管流变仪对PPS/GF以及PPS/GF/CaSO4晶须复合材料的流变行为进行了表征.结果表明,PPS/GF复合材料的黏度随着剪切速率的增大而逐渐降低,呈现出明显的"剪切变稀"行为.随着GF用量的增加,PPS/GF复合材料的黏度逐渐升高,非牛顿指数n值逐渐降低.晶须用量为5份时,PPS/GF/CaSO4晶须复合材料的黏度最低,结构黏度指数较低,纺丝加工性能较好.复合材料的黏度随晶须用量的继续增加而增加.在310~315℃时复合材料的结构黏度指数下降幅度最小,表明该温度范围熔体流动最稳定.  相似文献   

18.
通过马来酸酐接枝苯乙烯-丁二烯嵌段共聚物(SEBS-MAH)对聚苯醚/尼龙6(PPO/PA6)合金进行增容增韧改性,制备芳纶纤维(AF)增强PPO/PA6/SEBS-MAH复合材料。实验结果表明:SEBS-MAH能够提高PPO/PA6共混体系的相容性,并且能够提高其力学性能,添加10份SEBS-MAH比不添加SEBS-MAH共混体系的拉伸、弯曲和冲击强度各增加了19.1%、49.3%和46.8%,共混物的玻璃化转变温度得到提高;AF能够提高PPO/PA6/SEBS-MAH共混体系的力学性能以及摩擦性能,并使共混体系的刚性得到提高,添加7.5份AF的复合材料的拉伸、弯曲和冲击强度分别比未添加AF时提高了22.1%、13.1%和12.9%,摩擦系数降低了0.18。  相似文献   

19.
制备了R2511、R2512两种RTM环氧树脂体系,研究了其工艺性能、固化性能及力学性能,分析表明:两种树脂体系均具有适宜的低粘度操作窗口,R2511树脂体系的最佳工艺区间为40~50℃,R2512树脂体系的最佳工艺区间为常温灌注;R2511树脂体系活化能为72 kJ/mol,R2512树脂体系活化能较低,为62 kJ/mol;R2512树脂体系整体力学性能优于R2511树脂体系;两种树脂适用于不同的温度体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号