首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple method for depositing mesoporous silica films directly on macroporous α-alumina supports is reported. A polymeric silica sol was prepared by hydrolysis of tetraethylorthosilicate in acid propanol in presence of hexadecyltrimethylammonium bromide as template. The rheology of the sol was changed by a modified urea-based thixotropic agent, which was used in a concentration range between 2% and 10% on volume. The dynamic viscosity of the sol was measured as a function of shear rate. The rheology modifier was found to increase the viscosity of the sol and confer at the same time a thixotropic behavior to it. Long range order in the unmodified and modified materials was analyzed by XRD on powders after calcination at 500 °C. It was found that the pore size increased with increasing concentration of additive, while the degree of order decreased until eventually, at high concentrations, the ordered porous structure collapsed completely. The gradual pore size increase at lower concentration is thought to be caused by swelling of the surfactant micelles by the rheology modifier.The modified sols were deposited via dip-coating on α-alumina disks. The morphology of the silica top layers was characterized by SEM. Pore size distributions and permeances of the prepared membranes were assessed by permporometry and single gas permeation measurements, respectively. The membranes had narrow pore size distributions, with an average diameter of about 2 nm. Permeabilities of H2, He, CH4 and O2 were compared. Hydrogen permeances up to 6 × 10−7 mol s−1 m−2 Pa−1 were measured at 473 K. The gas flux across the membrane follows a Knudsen-type mechanism, as shown by the permselectivities.  相似文献   

2.
The adsorption properties of various organo-modified mesoporous silicas towards a methoxy-modified chlorophenol in water have been studied. Phenyl, propyl, hexyl and hexadecyl groups were selected to study the possible interactions that the pollutant could preferentially develop with the surface sites. The best performing sample appears to be the hexyl-modified porous silica and one of the least performing the un-modified mesoporous silica. The physical state of the adsorbed chlorophenol in these two confined environments as well as the pollutant/surface interactions were characterized by a combination of solid-state NMR techniques. The 1H and 13C NMR responses show a high mobility of the molecules in both the modified and un-modified silica, suggesting the absence of strong interactions between the pollutant and the surface, despite the large difference in the chemical nature of the silica surface sites.  相似文献   

3.
Inorganic–organic hybrid materials based on functionalized silica and carbon were synthesized by anchoring molybdovanadophosphoric acid (H5[PMo10V2O40] · 32.5H2O) onto amine-functionalized SBA-15, ethane-bridged SBA-15 and mesoporous carbon, respectively. Small angle X-ray diffraction, N2 sorption analysis, HRTEM, SEM, FT-IR, CP-MAS NMR were used to diagnose the mesoporous structure of inorganic–organic hybrid materials. The structural integrity of molybdovanadophosphoric acid has been found to be retained after immobilization over mesoporous materials. These inorganic–organic hybrid materials were tested in the environmentally friendly oxidation of 2-methylnaphthalene (2MN) with 30% aqueous hydrogen peroxide. Molybdovanadophosphoric acid containing mesoporous organosilica hybrid material (ethane-bridged SBA-15) exhibited higher catalytic activities in the oxidation of 2MN to give a clean product 2-methy-1,4-naphthoquinone (menadione vitamin K3 precursor), because of the improved hydrophobicity of the material. The correlation between structural properties and catalytic activities of these hybrid materials has been well addressed in our present studies.  相似文献   

4.
The sol–gel derived polymer/silicate hybrid materials have attracted considerable attention in recent years. The incorporation of silicate phase into polymeric materials may constitute an important tool to either enhance mechanical properties or provide more biocompatibility to the resulting hybrids. PHEA, α,β-poly(N-2-hydroxyethyl-dl-aspartamide), is a class of poly(amino acid)s that has been widely studied as a biodegradable functional polymer with potential biomedical and pharmaceutical applications. Hydrogels from PHEA are formed easily by a chemical or physical crosslinking reaction but the resulting gels are mechanically weak and less thermally stable. In this study, hybrid materials were prepared based on PHEA and silicate. A sol–gel process was employed using TEOS and modified PHEA to introduce inorganic silicate phase within the polymer gel matrix. FT-IR and NMR were used to analyze the chemical structure of the PHEA derivatives. In addition, the morphology, thermal and swelling properties of the hybrid gels were examined.  相似文献   

5.
To obtain a novel, active and selective to diesel catalytic material for syngas processing via Fischer–Tropsch synthesis (FTS), a series of 20 wt.% cobalt catalysts has been prepared by impregnation of a mesoporous molecular sieve based on silica (SBA-15, Al-MCM-41, INT-MM1), and a commercial amorphous silica for comparison purposes. All materials were characterized by several physico-chemical techniques: AAS, BET surface area, XRD, TPR, and H2 chemisorption with pulse reoxidation and finally their reactivity on the FTS reaction was evaluated at 523 K, 10 bar, and H2/CO = 2. Catalytic and characterization results show a great influence of mesoporous support porosity on the structure, reducibility, and FTS catalytic behavior of cobalt oxide species supported over these ordered materials. It was found that the size of supported cobalt oxide species formed during the calcination step increased with the average pore size (Dp) of the mesoporous support. Thus, the catalyst with larger Co oxide species located in wide pore silica showed to be easily reducible, more active and very selective toward the diesel fraction. It seems to be the case of the Co/SBA-15 solid, which showed to be the most active solid (XCO 63%) when the same mass of catalyst was used. Under CO iso-conversion conditions (XCO 40%), Co/SBA-15 was more selective toward the formation of C5+ hydrocarbons (80%, α = 0.76) and less selective to CH4 (15%). On the contrary, when Al-MCM-41 and INT-MM1 were used as supports, a lower selectivity to C5+ and CO conversion and higher CH4 selectivity (20%) were observed due to the decrease of Dp, of the cobalt oxide species size and the reducibility degree of such species.  相似文献   

6.
Using the surfactant CTMABr (cetyltrimethyl ammonium bromide) and cerium(IV) sulfate, mesoporous Ce-MCM-41 molecular sieves were produced under a hydrothermal condition with various surfactant/silica (surfactant/Si) and silica/cerium (Si/Ce) ratios. Changes to the structural traits caused by changing the molar ratios of both surfactant/Si and Si/Ce were investigated. XRD (X-ray diffraction), FT-IR (fourier transform infrared spectroscopy), and SEM (scanning electro microscopy) were used for the characterization of prepared mesoporous samples. Among the tested molar ratios, surfactant/Si ratio of 0.5 and 0.2 showed highest values of d1 0 0 and intensity, respectively, for the Si-MCM-41. XRD analysis also identified a quintessential hexagonal structure of Ce-MCM-41 for the Si/Ce molar ratio higher than 40 (maintaining the surfactant/Si ratio at 0.2). When cerium content was increased to have the Si/Ce molar ratio of 20, the hexagonal structure of Ce-MCM-41 was collapsed due to the structural stress of substituted cerium. FT-IR results confirmed calcination of Ce-MCM-41 and the incorporation of Ce4+ ions of cerium sulfate into the silica surface with proper removal of the surfactant. Rod-like shape with rounded edges of the prepared Ce-MCM-41 samples was identified by SEM. These results suggest surfactant/Si ratio of 0.2 and Si/Ce ratio of 40 for the production of Ce-MCM-41 with the highest level of crystallinity.  相似文献   

7.
Mesoporous silica SBA-15 was prepared and loaded with Pt using the deposition–precipitation method (DP). The Pt loaded material was characterized by N2 sorption, and X-ray diffraction (XRD) at low scattering angles as well as XRD at wide angles, in order to monitor the impact of the metal deposition pathway on the mesoporous texture. After DP the material contains ordered mesoporous silica as well as a fraction appearing as non-ordered amorphous silica. This is most likely caused by the hydrothermal treatment involved in the DP. The material was also characterized using NIR and 29Si MAS NMR spectroscopy. The NIR results of the calcined materials indicate that the silanol groups of SBA-15 may act as anchoring groups for the metallic Pt particles. The NMR spectroscopy data shows that the Pt/SBA-15 sample prepared by the DP method posseses a better short-range regularity of SBA-15 walls as compared to the parent SBA-15. This is suggested to be caused by dissolution and possible re-precipitation of siliceous species.  相似文献   

8.
Organosoluble polyimide/silica hybrid materials were prepared using the sol–gel process. The organosoluble polyimide was based on pyromellitic anhydride (PMDA) and 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane (MMDA). The silica particle size in the hybrid is increased from 100–200 nm for the hybrid containing 5 wt % silica to 1–2 µm for the hybrid containing 20 wt % silica. The strength and the toughness of the hybrids are improved simultaneously when the silica content is below 10 wt %. As the silica content is increased, the glass transition temperature (Tg) of the hybrids is increased slightly. The thermal stability of the hybrids is improved obviously and their coefficients of thermal expansion are reduced. The hybrids are soluble in strong polar aprotic organic solvents when the silica content is below 5 wt %. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2977–2984, 1999  相似文献   

9.
The adsorption behaviour of poly(ethylene oxide) and trimethylammonium glycol chitosan iodide from water onto silica gel is reported. A total organic carbon analytical method was employed to determine precisely the small quantity of polymer remaining after the attainment of adsorption equilibrium. The adsorption isotherms and the curves of equilibrium adsorption against pH were obtained and compared with the ionization properties of the silanol groups investigated by potentiometric titration. The results obtained are discussed in terms of the adsorption mechanism for nonionic and cationic polymers.  相似文献   

10.
Nanocomposites of cellulose acetate and sodium montmorillonite were prepared using the solution intercalation method with different solvents. The effects of solvent type on the morphology, thermal and mechanical properties of the nanocomposites were investigated by X-ray microtomography and diffraction, field emission scanning electron microscopy, analytical transmission electron microscopy based on electron loss spectroscopy imaging and dynamical mechanical analysis. XRD and TEM results indicated that the dispersion and delamination of the clay are achieved when the solvent presents favorable interactions with the clay. In this case, the storage modulus and the glass transition temperature are significantly higher than those of pure cellulose acetate. The results show that the solvent has a major effect in controlling the morphology of cellulose acetate and cellulose acetate nanocomposite and could be used as a process parameter to produce films with a range of properties.  相似文献   

11.
Cobalt doped amorphous mesoporous titania–silica with Ti/Si mass ratio of 0.8 (Co–TiO2–SiO2) was synthesized and used for the photodegradation of six cationic dyes (gentian violet, methyl violet, methylene blue, fuchsin basic, safranine T, and Rhdamine B) under UV and visible light illumination. The catalyst was characterized by a combination of various physicochemical techniques, such as N2 physisorption, diffuse reflectance UV–vis, X-ray diffraction, and FT-IR.Co–TiO2–SiO2 exhibited activity under UV light and had better activity under visible light when compared with that of Degussa P25 TiO2. The activity of Co–TiO2–SiO2 was also compared with that of Co-MCM-41, Co doped mesoporous titania with a crystalline framework (Co–MTiO2) and titania-loaded Co doped MCM-41 (TiO2/Co-MCM-41) for the degradation of gentian violet under visible light irradiation. It was also found that the degradation rates of Co–TiO2–SiO2 for gentian violet, methyl violet, methylene blue, fuchsin basic and safranine T were greater in alkaline media than in acid and neutral media, while it did not exhibit any significant activity for the photodegradation of Rhdamine B in alkaline media or in acid media under visible light irradiation.  相似文献   

12.
Using the F media, the hydrophobic zeolite and mesoporous silica can be synthesized. These hydrophobic porous materials exhibit the high ability for the adsorption of organic compounds diluted in water and become the useful supports of photocatalyst. The hydrophobic Ti-Beta(F) zeolite prepared in the F media exhibited high efficiency than the hydrophilic Ti-Beta(OH) zeolite prepared in OH media for the liquid-phase photocatalytic degradation of 2-propanol diluted in water to produce CO2 and H2O. The TiO2 loaded on the hydrophobic mesoporous silica HMS(F) (TiO2/HMS(F)), which was synthesized using tetraethyl orthosilicate, tetraethylammonium fluoride as the source of the fluoride and dodecylamine as templates, also exhibited the efficient photocatalytic performance for the degradation. The amount of adsorption of 2-propanol and the photocatalytic reactivity for the degradation increased with increasing the content of fluoride ions on these photocatalysts. The efficient photocatalytic degradation of 2-propanol diluted in water on Ti-Beta(F) zeolite and TiO2/HMS(F) mesoporous silica can be attributed to the larger affinity for the adsorption of propanol molecules on the titanium oxide species depending on the hydrophobic surface properties of these photocatalysts.  相似文献   

13.
A series of catalysts of iron–manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratio were studied for low-temperature selective catalytic reduction (SCR) of NO with ammonia in the presence of excess oxygen. Effects of amounts of iron–manganese oxide and calcination temperatures on NO conversion were also investigated. It was found that the Mn–Fe/MPS with Mn/Fe = 1 at the calcination temperature of 673 K showed the highest activity. The results showed that this catalyst yielded 99.1% NO conversion at 433 K at a space velocity of 20,000 h−1. H2O has no adverse impact on the activity when the SCR reaction temperature is above 413 K. In addition, the SCR activity was suppressed gradually in the presence of SO2 and H2O, while such effect was reversible after heating treatment.  相似文献   

14.
超声波对沉淀二氧化硅的分散解聚研究   总被引:4,自引:0,他引:4  
研究了超声波对沉淀二氧化硅的分散解聚效果,实验证明,当频率为40kHz,功率密度达到1.8W/cm^2时,沉淀二氧化硅浆料可以获得极佳的分解效果,二氧化硅聚集体小于77.6nm的颗粒数量达98.9%。  相似文献   

15.
The effects of promotion with ruthenium on the structure of cobalt catalysts and their performance in Fischer–Tropsch synthesis were studied using MCM-41 and SBA-15 as catalytic supports. The catalysts were characterized by N2 physisorption, H2-temperature programmed reduction, in situ magnetic measurements, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that monometallic cobalt catalysts supported by smaller pore mesoporous silicas (dp = 3–4 nm) had much lower activity in Fischer–Tropsch synthesis than their larger pore counterparts (dp = 5–6 nm). Promotion with ruthenium of smaller pore cobalt catalysts led to a considerable increase in Fischer–Tropsch reaction rate, while the effect of the promotion with ruthenium was less significant with the catalysts supported by larger pore silicas.Characterizations of smaller pore cobalt catalysts revealed strong impact of ruthenium promotion on the repartition of cobalt between reducible Co3O4 phase and barely reducible amorphous cobalt silicate in the calcined catalyst precursors. Smaller pore monometallic cobalt catalysts showed high fraction of barely reducible cobalt silicate. Promotion with ruthenium led to a significant increase in the fraction of reducible Co3O4 and in decrease in the amount of cobalt silicate. In both calcined monometallic and Ru-promoted cobalt catalysts supported by larger pore silicas, easy reducible Co3O4 was the dominant phase. Promotion with ruthenium of larger pore catalysts had smaller influence on cobalt dispersion, fraction of reducible cobalt phases and thus on catalytic performance.  相似文献   

16.
Rheological behaviour and cure characteristics of silica‐filled styrene–butadiene rubber (SBR) compounds and SBR compounds filled with both silica and carbon black with different silica contents were investigated. Rheocurves of the time versus the torque of the compounds showed specific trends with the silica content. For the compounds with low silica content (less than 50 phr), the torque decreased immediately after the steep increase at the initial point of the rheocurve and then increased very slowly. For the compounds with high silica content (more than 50 phr), the rheographs showed two minimum torque points; the torque decreased immediately after the steep increase at the start point of the rheocurve and then increased sharply before reaching the second minimum point. This can be explained by the strong filler–filler interaction of silica. The minimum torque of the compound increased slightly with an increase of the silica content up to 50 phr silica content and then increased appreciably. For the silica‐filled compounds, cure times of the t02, t40, and t90 became shorter with an increase of the filler content. For the compounds filled with both silica and carbon black (total filler content of 80 phr), the cure times became longer with an increase of the silica content ratio. © 2001 Society of Chemical Industry  相似文献   

17.
研究了气相法白炭黑及甲基丙烯酸锌(ZDMA)对天然胶的力学性能、加工性能的影响.ZDMA采用原位生成的方法制备.力学性能的结果表明:ZDMA和气相法白炭黑对NR有协同补强的效应.橡胶加工性能分析(RPA)表明:ZDMA的加入,不仅能使天然胶/气相法白炭黑体系的加工性能得到很好的改善,而且能降低60 ℃时硫化胶的损耗因子.  相似文献   

18.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene-co-acrylonitrile) (SAN) with natural and organically modified montmorillonite clays (Cloisite®25A and Cloisite®15A) were prepared by melt mixing in a twin-screw extruder and the effect of clay on the phase separation morphology and physical properties of nanocomposites was investigated. Multi-pass samples were; those extruded once (one-pass), twice (two-pass) and three times (three-pass). Dispersion of clays in the matrix polymers was investigated using XRD and TEM. Interestingly enough, the clays were observed to be mainly located at the boundaries of PMMA and SAN for most of the nanocomposites. As the number of pass increased, the phase-separated domain size became larger for nanocomposites of PMMA/SAN containing PM, while nanocomposites with clay 25A or 15A showed less degree of growth in domain size in the TEM pictures. Viscosities of the continuous phase and separated domains, and the compatibilizing effect of clays were discussed as the probable explanations for these observations. These were supported by the rheological properties measurements, where the nanocomposites with clay 25A or 15A showed the higher complex viscosities than those of PM and also showed some shear thinning behavior. DSC and TGA analyses were also conducted.  相似文献   

19.
Ternary blends, based on 70% by weight of polypropylene (PP) with 30% by weight of a dispersed phase, consisting of 15% polyamide-6 (PA6) and 15% of a mixture comprising varying ratios of an unreactive poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer and a reactive maleic anhydride-grafted SEBS-g-MA, were produced via melt blending in a co-rotating twin-screw extruder. TEM revealed the blend containing only non-reactive SEBS to exhibit individual PA6 and SEBS dispersed phases. However, the progressive replacement of SEBS with reactive SEBS-g-MA increased the degree of interfacial reaction between the SEBS and PA6 phases, thus reducing interfacial tension and providing a driving force for encapsulation of the PA6 by the SEBS. Consequently, the dispersed-phase morphology was observed to transform from two separate phases to acorn-type composite particles, then to individual core-shell particles and finally to agglomerates of the core-shell particles. The resultant blends exhibited significant morphology-induced variations in both thermal and mechanical properties. DSC showed that blends in which the diameter of the PA6 particles was reduced to ≤3 μm by the increasing interfacial reaction exhibited fractionated PA6 crystallisation. In general, mechanical testing showed the blends to exhibit inferior low-strain tensile properties (modulus and yield stress) compared to the matrix PP, but superior ultimate tensile properties (stress and strain at break) and impact strength. These changes are discussed with reference to composite models.  相似文献   

20.
Daniel Cohn  Gad Marom 《Polymer》1983,24(2):223-228
The effect of the morphology on the hygroelastic behaviour of polyester and epoxy resins is studied. The morphology is expressed by two factors, namely, the free volume of the polymer and a two-phase formation. The first factor is varied in styrene-crosslinked polyester using different styrene/alkyd proportions, and by using different immersion temperatures. The second is investigated in polyesters by replacing styrene with bromostyrene inducing a two-phase structure, and in epoxies by changing the hardener/epoxy ratio. It is shown that the hygroelastic response is affected markedly by the morphology. In general, both the moisture content and its rate of absorption are higher when the polymer network is more open and when more free volume is available. In some cases, however, the hygroelastic parameters are dominated by a two-phase structure where present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号