首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of evidence suggest that somatostatin (SRIF) regulates GH release through central control of hypothalamic GHRH neurons. A possible mechanism is through interaction with SRIF binding sites previously shown to be associated with a subpopulation of GHRH-containing neurons in the arcuate nucleus (Arc), although the molecular identity of these binding sites is not yet known. We performed dual chromogenic and autoradiographic in situ hybridization to determine whether GHRH neurons coexpress either the sst1 and/or sst2 SRIF receptor mRNAs. Computerized image analysis revealed that approximately 15% of GHRH-hybridizing neurons in the Arc expressed the sst1 receptor gene, whereas 15% coexpressed sst2 mRNA. These studies are the first to colocalize any SRIF receptor subtype in GHRH mRNA-containing neurons in brain. The results suggest that, in the Arc, SRIF may directly modulate GHRH release into the hypophyseal portal blood, and thereby influence GH secretion, through interaction with both sst1 and sst2 receptor subtypes.  相似文献   

2.
The sheep is a valuable model in which to study GH neuroregulation as its pattern of GH secretion is very close to that in humans. Furthermore, important differences in somatostatin (SRIH) action between rats and sheep have been found previously. Our goal was to compare in male rat and ram pituitaries the binding characteristics of somatostatin receptors and the effect of SRIH and 17 analogues on GH release. Using radioautography, SRIH binding was seen to be evenly distributed over the anterior pituitary of both species. In the binding assay, binding sites were three times more concentrated in rats than in sheep. Important interspecies differences in the action of SRIH and its analogues were found: they inhibited GH at lower concentrations in rats than in sheep. Seven peptides displayed greater inhibitory ability in sheep than in rats while three were more potent in rats. Agonistic potencies to inhibit GH release in rats were correlated with somatostatin receptors subtype 2 (sst2) affinities. Our data confirm and extend the quantitative differences between rat and sheep in SRIH inhibitory action on GH secretion and confirm that ligand-binding properties of a given receptor subtype cannot be extrapolated across species.  相似文献   

3.
The release of growth hormone (GH) from the anterior pituitary is regulated by hypothalamic peptides especially GH-releasing hormone (GHRH) and somatostatin, which in turn are controlled by classic neurotransmitters such as noradrenaline, dopamine, and acetylcholine, as well as negative feedback from GH and insulin-like growth factor-1. There has been extensive investigation of this axis in patients with depression. The most consistently reported abnormality is in noradrenergic-mediated GH release, which probably occurs via GHRH containing neurones. ACh-induced GH release through the somatostatin system, GABA, and also GHRH-stimulated release are reported as abnormal by some researchers.  相似文献   

4.
Leptin is a hormone secreted by the adipocytes that regulates food intake and energy expenditure. It is known that growth hormone (GH) secretion is markedly influenced by body weight, being suppressed in obesity and cachexia, and recent data have demonstrated that GH release is regulated by leptin levels. Although one of the sites of action of leptin is likely to be the hypothalamus, since leptin receptor mRNA is particularly abundant in several hypothalamic nuclei, the mechanisms by which leptin regulates GH secretion are not yet known. The aim of the present study was to investigate whether leptin could act at the hypothalamic level modulating somatostatin and GH-releasing hormone (GHRH) expression. The administration of anti-GHRH serum (500 microl, i.v.) completely blocked leptin-induced GH release in fasting rats. In contrast, the treatment with anti-somatostatin serum (500 microl, i.v.) significantly increased GH release in this condition. Furthermore, leptin administration (10 microg, i.c.v.) to intact fasting animals reversed the inhibitory effect produced by fasting on GHRH mRNA levels in the arcuate nucleus of the hypothalamus, and increased somatostatin mRNA content in the periventricular nucleus. Finally, leptin administration (10 microgram, i.c.v.) to hypophysectomized fasting rats increased GHRH mRNA levels, and decreased somatostatin mRNA content, indicating an effect of leptin on hypothalamic GHRH- and somatostatin-producing neurons. These findings suggest a role for GHRH and somatostatin as mediators of leptin-induced GH secretion.  相似文献   

5.
Growth hormone secretagogues (GHSs) are synthetic peptidyl and nonpeptidyl compounds that are believed to stimulate the release of GH by a direct effect on the pituitary somatotrope and by stimulation of growth hormone-releasing hormone (GHRH) release and the suppression of somatostatin (SRIH) tone. Recently, the receptor for these pharmacologic agents was cloned and its expression localized to the pituitary and hypothalamus. The elucidation of an unique GHS receptor (GHS-R) suggests there is a yet to be identified endogenous ligand which could exert an important role in regulation of GH secretion. It is clearly established that GH acts to regulate its own production by feeding back at the level of the hypothalamus to downregulate GHRH and upregulate SRIH synthesis and by induction of IGF-I, which acts at the pituitary to block somatotrope responsiveness to GHRH. If the endogenous GHS/GHS-R signaling system is important in regulating GH release, it might be reasoned that changes in circulating GH concentrations would also directly or indirectly (via generation of IGF-I) modify GHS-R production. To test this hypothesis we used RT-PCR to examined pituitary and hypothalamic GHS-R mRNA levels in the spontaneous dwarf rat (SDR), an animal model characterized by the absence of GH due to a point mutation in the GH gene. In the absence of GH feedback regulation, SDR pituitary GHS-R mRNA levels were 385 +/- 61% greater (p < 0.01) than those observed in normal controls while SDR hypothalamic GHS-R mRNA levels were not significantly different from those in normal rats. Three-day subcutaneous infusion of rat GH by osmotic pump reduced SDR pituitary GHS-R mRNA levels to 55 +/- 9% of vehicle-treated controls (p < 0.05) but did not significantly alter hypothalamic GHS-R mRNA levels. To test if the changes in GHS-R mRNA levels observed following GH treatment were due to elevation of circulating IGF-I concentrations, SDRs were infused with recombinant human IGF-I. Replacement of IGF-I did not significantly alter either pituitary or hypothalamic GHS-R mRNA levels, indicating that GH acts independent of circulating IGF-I to regulate pituitary GHS-R expression in the SDR model.  相似文献   

6.
Pharmacological administration of either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) were reported to inhibit endogenous GH release in humans and in the laboratory animal. We have evaluated the short-term differential mechanisms whereby the two hormones affect hypothalamic regulation of GH secretion. Wistar male rats (90 days old) were injected i.p. with either GH (recombinant GH NIAMDD, Baltimore, MD, USA), rIGF-1 (Fujisawa Pharmaceutical Co. Ltd., Osaka, Japan) or saline. Animals were sacrificed at 15, 30, 60 and 120 minutes following injection. Hypothalami were dissected and extracted immediately and the levels of growth hormone-releasing hormone (GHRH) and somatostatin were determined using specific antisera. Trunk blood was collected for GH and IGF-1 determination by RIA. Administration of IGF-1 or GH markedly decreased hypothalamic somatostatin stores by 77% and 54% respectively, within 15 minutes. Concomitantly, the wide range of GH levels found in the control group was reduced in the IGF-1 treated group suggesting that the pulsatile pattern of GH secretion was suppressed. Growth hormone administration induced an increase in hypothalamic GHRH stores (60% at 120 minutes). During this period serum IGF-1 levels were not altered. It is suggested that short term modulation of hypothalamic neurohormones by GH and IGF-1 is mediated by rapid stimulation of somatostatin release by both hormones, and inhibition of GHRH release is induced only by GH.  相似文献   

7.
Since its original discovery as the neuroendocrine hormone responsible for inhibiting growth hormone (GH) secretion, our understanding of the functions of somatostatin [or somatotrophin release inhibitory hormone (SRIH)], both in the periphery and the CNS, has grown enormously. With the cloning of five SRIH receptors, much interest has centred recently on the potential use of SRIH analogues in the treatment of clinical conditions ranging from human cancers to Alzheimer's and Parkinson's diseases. There is a growing recognition that the physiological functions of GH also need to be extended beyond its role in growth control, e.g. to a role in the maintenance of normal immune, cardiovascular and reproductive functions. Here, Glenda Gillies addresses the importance of somatostatinergic systems in regulating the sexually dimorphic patterns of GH secretion as well as their influence on other endocrine hormones. She also considers the neurotransmitter/neuromodulator actions of SRIH within the hypothalamus, where it is involved in the neural control and integration of many aspects of endocrine function, as well as its potential role in the maturation of the hypothalamus during the critical perinatal period.  相似文献   

8.
In insulin-dependent diabetes mellitus (IDDM), inappropriate growth hormone (GH) responses to several stimuli, including GH-releasing hormone (GHRH), have been described. A decreased hypothalamic somatostatinergic tone is one of the most likely explanations for these findings. His-DTrp-Ala-Trp-DPhe-Lys-NH2 [GH-releasing peptide-6 [GHRP-6]] is a synthetic hexapeptide that stimulates GH release in vitro and in vivo. The mechanism of action of GHRP-6 is unknown, but it probably does not inhibit hypothalamic somatostatin secretion. Also, GHRH and GHRP-6 apparently activate different intracellular pathways to release GH. The aim of this study was to evaluate whether there is a differential effect of IDDM on GHRP-6- and GHRH-induced GH secretion. Six patients with IDDM and seven control subjects were studied. Each subject received GHRP-6 (1 microgram/kg intravenously [IV]), GHRH (100 micrograms IV), and GHRP-6 + GHRH on 3 separate days. GH peak values (mean +/- SE in micrograms per liter) were similar in controls and diabetics after GHRH (22.5 +/- 7.8 v 24.0 +/- 9.7) and after GHRP-5 (20.5 +/- 5.3 v 24.4 +/- 6.3). The association of GHRP-6 and GHRH induced a significantly higher GH release than administration of the isolated peptides in both groups. The synergistic GH response to combined administration of GHRP-6 and GHRH was not different in controls (70.5 +/- 20.0) and diabetics (119.0 +/- 22.2). In summary, the effectiveness of GHRP-6 in IDDM could reinforce the evidence that this peptide probably does not release GH through a decrease in hypothalamic somatostatin secretion. Moreover, our data suggest that both GHRH and GHRP-6 releasing mechanisms are unaltered in IDDM.  相似文献   

9.
Administration of hormones to humans and animals results in specific effects on the sleep electroencephalogram (EEG) and nocturnal hormone secretion. Studies with pulsatile administration of various neuropeptides in young and old normal controls and in patients with depression suggest they play a key role in sleep-endocrine regulation. Growth hormone (GH)-releasing hormone (GHRH) stimulates GH and slow wave sleep (SWS) and inhibits cortisol, whereas corticotropin-releasing hormone (CRH) exerts opposite effects. Changes in the GHRH:CRH ratio contribute to sleep-endocrine aberrations during normal ageing and acute depression. In addition, galanin and neuropeptide Y promote sleep, whereas, in the elderly, somatostatin impairs sleep. The rapid eye movement (REM)-nonREM cycle is modulated by vasoactive intestinal polypeptide. Cortisol stimulates SWS and GH, probably by feedback inhibition of CRH. Neuroactive steroids exert specific effects on the sleep EEG, which can be explained by gamma-aminobutyric acid(A) receptor modulation.  相似文献   

10.
In the human as in other mammals, growth hormone (GH) is secreted as a series of pulses. In normal young adults, a major secretory episode occurs shortly after sleep onset, in temporal association with the first period of slow-wave (SW) sleep. In men, approximately 70% of the daily GH output occurs during early sleep throughout adulthood. In women, the contribution of sleep-dependent GH release to the daily output is lower and more variable. Studies involving shifts of the sleep-wake cycle have consistently shown that sleep-wake homeostasis is the primary determinant of the temporal organization of human GH release. Effects of circadian rhythmicity may occasionally be detected. During nocturnal sleep, the sleep-onset GH pulse is caused by a surge of hypothalamic GHRH release which coincides with a circadian-dependent period of relative somatostatin disinhibition. Extensive evidence indicates the existence of a consistent relationship between SW sleep and increased GH secretion and, conversely, between awakenings and decreased GH release. There is a linear relationship between amounts of SW sleep--whether measured by visual scoring or by delta activity--and amounts of concomitant GH secretion, although dissociations may occur, most likely because of variable levels of somatostatin inhibition. Pharmacological stimulation of SW sleep results in increased GH release, and compounds which increase SW sleep may therefore represent a novel class of GH secretagogues. During aging, SW sleep and GH secretion decrease with the same chronology, raising the possibility that the peripheral effects of the hyposomatotropism of the elderly may partially reflect age-related alterations in sleep-wake homeostasis. While the association between sleep and GH release has been well documented, there is also evidence indicating that components of the somatotropic axis are involved in regulating sleep. The studies are most consistent in indicating a role for GHRH in promoting NREM and/or SW sleep via central, rather than peripheral, mechanisms. A role for GH in sleep regulation is less well-documented but seems to involve REM, rather than NREM, sleep. It has been proposed that the stimulation of GH release and the promotion of NREM sleep by GHRH are two separate processes which involve GHRH neurons located in two distinct areas of the hypothalamus. Somatostatinergic control of GH release appears to be weaker during sleep than during wake, suggesting that somatostatinergic tone is lower in the hypothalamic area(s) involved in sleep regulation and sleep-related GH release than in the area controlling daytime GH secretion. While the concept of a dual control of daytime and sleep-related GH secretion remains to be directly demonstrated, it allows for the reconciliation of a number of experimental observations.  相似文献   

11.
Endogenous production of SRIH and GHRH was analyzed in human breast tissue. SRIH precursor (pro-SRIH) was identified after Sephadex G-50 filtration of acetic acid extracts of normal and tumoral human breast samples. SRIH-(1-14) or -(1-28) could not be detected in breast tissue, whereas the immunoreactive SRIH released in vitro was characterized as SRIH-(1-28). Endogenous production of GHRH was assessed by identification of GHRH messenger ribonucleic acid by PCR followed by sequencing of the amplified complementary DNA and by high performance liquid chromatographic characterization of immunoreactive GHRH contained in the tissue and released in vitro. There were no differences in pro-SRIH or GHRH-(1-44) tissue contents between normal and tumoral samples. The release of both peptides was evidenced in perifusion and static incubation. Perifusion of normal breast tissue (n = 3) showed pulsatile release of SRIH and GHRH. Perifusion of tumors (n = 4) showed SRIH release in 50% of the cases. SRIH release was pulsatile in one case. GHRH release was observed in the four tumoral samples analyzed, but was pulsatile in only one case. In static incubation, tumors (n = 6) secreted 13 times more GHRH than did normal samples (n = 3; 383 +/- 92 vs. 29.6 +/- 4.6 fmol/mg protein; P < 0.05). Stimulation of GHRH release by exogenous SRIH was observed only with the normal tissue. Together these data provide evidence for the existence of local production of SRIH and GHRH by human breast. Hypersecretion of GHRH by breast tumors indicates that this peptide could play a role in maintaining epithelial cell proliferation as is the case for other peptides produced locally.  相似文献   

12.
GABA, somatostatin and enkephalin are neurotransmitters of enteric interneurons and comprise part of the intrinsic neural circuits regulating peristalsis. Within the relaxation phase of reflex peristalsis, nitric oxide (NO) is released by inhibitory motor neurons and perhaps enteric interneurons as well. Previously, we identified by GABA transaminase (GABA-T) immunohistochemistry, a subpopulation of GABAergic interneurons in the human colon which also contain NO synthase activity and hence produce NO. In this study, we have examined further the capacity for cotransmission within the GABAergic innervation in human colon. The expression of two important neuropeptides within GABAergic neurons was determined by combined double-labelled immunocytochemistry using antibodies for GABA-T, enkephalin and somatostatin, together with the demonstration of NO synthase-related NADPH diaphorase staining in cryosectioned colon. Both neuropeptides were found in GABAergic neurons of the colon. The evidence presented herein confirms the colocalization of NO synthase activity and GABA-T immunoreactivity in subpopulations of enteric neurons and further allows the neurochemical classification of GABAergic neurons of the human colon into three subsets: (i) neurons colocalizing somatostatin-like immunoreactivity representing about 40% of the GABAergic neurons, (ii) neurons colocalizing enkephalin-like immunoreactivity, about 9% of the GABAergic neurons and (iii) neurons colocalizing NO synthase activity, about 23% of the GABAergic neurons. This division of GABAergic interneurons into distinct subpopulations of neuropeptide or NO synthase containing cells is consistent with and provides an anatomical correlate for the pharmacology of these transmitters and the pattern of transmitter release during reflex peristalsis.  相似文献   

13.
An acquired defect in growth hormone secretion in mature dogs has been associated with some forms of generalised alopecia. In an attempt to elucidate the pathogenesis of the disturbance in growth hormone release, the plasma concentrations of growth hormone and insulin-like growth factor I (IGF-I) were measured in two seven-year-old poodles with alopecia and, for comparison, in two young German sheperd dogs with congenital hyposomatotropism (pituitary dwarfism). In the poodles the basal concentrations of growth hormone were low, although often above the detection limit of the assay. The concentrations of IGF-I were in the reference range for healthy poodles. No growth hormone could be detected in the plasma of the German sheperd dogs and the concentrations of IGF-I were very low. Stimulation with clonidine and growth hormone releasing hormone (GHRH) before and after repeated injections of GHRH did not result in significant increases in growth hormone concentrations in plasma. The concentrations of growth hormone in the poodles fluctuated at low levels during the test period. In the German sheperd dogs the levels of growth hormone remained unmeasurable during the stimulation tests. It was concluded that in the two poodles the basal concentrations of growth hormone were sufficient to maintain normal IGF-I concentrations, and thus the release of growth hormone was considered appropriate. Based upon measurements of urinary corticoids and a review of the literature it is suggested that the lack of a growth hormone response to stimulation was due to the enhanced release of somatostatin as a result of mild and fluctuating hyperadrenocorticism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Indirect data exist which implicate elevated growth hormone (GH) as a factor in the development of diabetic nephropathy. The administration of somatostatin (SRIH) has been shown to reverse many of the changes found in early diabetic nephropathy; however, it is unknown whether SRIH causes these effects by the suppression of GH or by other unspecified factors. To study directly the possible effect of excess GH in the development of diabetic nephropathy, either ovine growth hormone (0.2 mg oGH) or diluent buffer was administered IM daily for 19 weeks to diabetic rats and to controls. Severity of nephropathy was assessed by 24 hour urine albumin excretion (UAE), relative kidney weight, and kidney histology. Results showed that diabetic rats overall had elevated UAE and kidney weight vs non-diabetic rats (46.2 +/- 8.6 vs 5.4 +/- 1.3 mg per day and 5.7 +/- 0.2 vs 2.7 +/- 0.1 mg per g of body weight, respectively, p < 0.001). However, no differences were detected between diabetic rats treated with GH compared to control diabetic rats. Additionally, diabetic rats had histopathologic changes consistent with early diabetic nephropathy, but no difference in severity scores was found between diabetic groups. These data provide evidence against GH as an etiologic factor in the development of diabetic nephropathy and it is speculated by the authors that SRIH exerts its protective renal effects in diabetes by mechanisms other than GH suppression.  相似文献   

15.
Synthetic GH secretagogues (GHSs) act via a receptor (GHS-R) distinct from that for GH-releasing hormone (GHRH). We have studied the hypothalamic expression and regulation of this receptor by in situ hybridization using a homologous riboprobe for rat GHS-R. GHS-R mRNA is prominently expressed in arcuate (ARC) and ventromedial nuclei (VMN) and in hippocampus, but not in the periventricular nucleus. Little or no specific hybridization could be observed in the pituitary under the conditions that gave strong signals in the hypothalamus. No sex difference in GHS-R expression was found in ARC or hippocampus, though expression in VMN was lower in males than in females. Compared with GHRH and neuropeptide Y (NPY), GHS-R was expressed in a distinct region of ventral ARC, and in regions of VMN not expressing GHRH or NPY. GHS-R expression was highly sensitive to GH, being markedly increased in GH-deficient dw/dw dwarf rats, and decreased in dw/dw rats treated with bovine GH (200 microg/day) for 6 days. Similar changes were observed in GHRH expression, whereas NPY expression was reduced in dw/dw rats and increased by bGH treatment. Continuous sc infusion of GHRP-6 in normal female rats did not alter ARC or VMN GHS-R expression. Our data implicate ARC and VMN cells as major hypothalamic targets for direct GHS action. The sensitivity of ARC GHS-R expression to modulation by GH suggests that GHS-Rs may be involved in feedback regulation of GH.  相似文献   

16.
The neuropeptides growth hormone-releasing hormone (GHRH) and corticotropin-releasing hormone (CRH) play a key role in sleep endocrine regulation. After pulsatile application of GHRH during the first few hours of the night in young normal controls SWS and GH increase, whereas cortisol is blunted. CRH however prompts inverse effects. The balance between these peptides is changed in favour of CRH physiologically during the second time of the night, during the acute episode of depression (due to overactivity of GRH) and in the elderly (due to reduced activity of CHRH). These changes explain the aberrances of sleep endocrine activity in these states, as shallow sleep, low GH and enhanced cortisol.  相似文献   

17.
To assess the possible influence of alcoholism on serotonergic control of growth hormone (GH) secretion, 6 mg of the 5-HT1D serotonergic receptor agonist, sumatriptan, was injected subcutaneously in a group of nine normal controls (aged 32 to 49 years) and in nine age-matched nondepressed male alcoholic subjects after 10 to 25 days of abstinence from alcohol. During the same period, subjects were also tested with GH-releasing hormone ([GHRH] 1 microgram/kg body weight in an intravenous [i.v.] bolus) and L-arginine, which releases GH from somatostatin inhibition (50 g in 50 mL normal saline over 30 minutes) to determine whether GH secretion in response to alternate secretagogues is preserved in alcoholics. A control test with administration of normal saline instead of drug treatments was also performed. Plasma GH levels were recorded over 2 hours in all tests. Administration of placebo did not change plasma GH levels in any subject. Similar GH responses were observed in normal controls and alcoholic subjects when GHRH or arginine were administered. A significant GH increase was observed in normal controls after sumatriptan injection; in contrast, GH secretion was not modified by sumatriptan administration in alcoholic patients. These data show that alcoholism is associated with an impairment in the serotonergic-stimulatory regulation of GH secretion, whereas GH responses to direct pituitary stimulation with GHRH or to release from somatostatinergic inhibition with arginine appear to be preserved in alcoholics.  相似文献   

18.
Experimental data suggest that elevated FFA levels play a leading role in the impaired GH secretion in obesity and may therefore contribute to the maintenance of overweight. GH has a direct lipolytic effect on adipose tissue; in turn, FFA elevation markedly reduces GH secretion. This suggests the existence of a classical endocrine feedback loop between FFA and GH secretion. However, the FFA mechanism of action is not yet understood. The involvement of somatostatin (SRIH) is controversial, and in vitro experiments suggest a direct effect of FFA on the pituitary. In sheep it is possible to collect hypophysial portal blood and quantify SRIH secretion in hypophysial portal blood under physiological conscious and unstressed conditions. In this study we determined the effects of FFA (Intralipid and heparin) infusion on peripheral GH and portal SRIH levels in intact rams chronically implanted with perihypophysial cannula and in rams actively immunized against SRIH to further determine SRIH-mediated FFA effects on GH axis. Immediately after initiation of Intralipid infusion, we observed a marked increase in the FFA concentration (2160 +/- 200 vs. 295 +/- 28 nmol/ml; P < 0.01) as well as a significant decrease in basal GH secretion (1.8 +/- 0.1 vs. 2.5 +/- 0.3 ng/ml; P < 0.05) and a drastic reduction of the GH response to i.v. GH-releasing hormone injection (4.8 +/- 0.7 ng/ml in FFA group vs. 35.8 +/- 9.7 ng/ml in saline group; P < 0.01). No change in plasma insulin-like growth factor I levels was observed. During the first 2 h of infusion, the GH decrease observed was concomitant with a significant increase in portal SRIH levels (22.1 +/- .2 vs. 13 +/- 1.6 pg/ml; P < 0.01). In rams actively immunized against SRIH, the effect of FFA on basal GH secretion was biphasic. During the first 90 min of infusion, the decrease in GH induced by FFA was significantly blunted in rams actively immunized against SRIH (57 +/- 9% for immunized rams vs. 23.5 +/- 2.5% for control rams). This corresponds to the period of increased SRIH portal levels. After this first 90-min period, no difference was seen between control and immunized rams. Our results show that FFA exert their inhibitory action on the GH axis at both pituitary and hypothalamic levels, the latter mainly during the first 90 min, through increased SRIH secretion.  相似文献   

19.
BACKGROUND: Obesity is characterised by growth hormone (GH) abnormalities, including a blunted response to stimulation and a 'paradoxical' increase after meals. The blunted GH release is reversed by a surgical intestinal bypass procedure. However, this does not mean that normal GH dynamics have been restored. The present study assessed whether post-surgical weight reduction in obese patients normalised the modulation of GH release produced by metabolic fuels. SUBJECTS: Ten obese female subjects, aged 23-54 y, were studied before and after biliopancreatic diversion (BPD). All patients, after surgery, had experienced a significant reduction in body weight (mean body mass index (BMI) 25.78 +/- 1.01 kg/m2 vs 44.68 +/- 1.73 kg/m2). Two groups were also studied as controls: Ten normal body weight female subjects and ten patients suffering from anorexia nervosa (AN, mean BMI 17.46 +/- 1.12 kg/m2). MEASUREMENTS: We have studied the GH response to a GH releasing hormone (GHRH) bolus (1 microg/kg i.v., at 13.00 h) before and after a standard meal. RESULTS: In post-BPD subjects, the GH response to GHRH in the fasting state, was clearly augmented in comparison with the pre-BPD values (peak values 18.06 +/- 4.56 vs 3.24 +/- 0.68 microg/L). In post-BPD subjects the postprandial GH response was further augmented in comparison with the fasting test (peak 30.12 +/- 4.99 microg/L, P < 0.05). This pattern was similar to that observed in anorexic patients. CONCLUSION: The surgical procedure restores a normal GH response to GHRH in the fasting state, but the 'paradoxical' GH response after meals remains present, suggesting a persistent GH derangement in such patients, which is not related to body weight per se. The surgical procedure makes obese patients similar to anorexics, in the relationships between metabolic fuels and GH secretion. The persistence of the GH postprandial response to GHRH in post-BPD subjects suggests a role for metabolic fuels in the regulation of somatostatin (SRIF) secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号