首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, Ba(Zn1/3Ta2/3)O3-based complex perovskite compounds, including Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Ta1/3Nb1/3)O3, Ba(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3, and Ba1/2Sr1/2(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3, were prepared and characterized. There was no second phase formation shown in the XRD patterns. Though it has been suggested that substitutions of multiple ions over A-site or B-site of the Ba(Zn1/3Ta2/3)O3 ceramics may not be beneficial to their microwave dielectric properties, the Ba(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 and Ba1/2Sr1/2(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 ceramics in this study were found to perform in a fairly acceptable manner. The Ba(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 ceramic (sintered at 1575 °C for 6 h) and the Ba1/2Sr1/2(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 ceramic (sintered at 1550 °C for 6 h) reported the following characteristics after annealing at 1400 °C for 10 h: 24.9 and 27.0 for dielectric constants (?r), 83,000 and 32,100 GHz for quality factors (Q × f) values and −12.8 and −22.6 ppm/°C for temperature coefficients of resonance frequency (τf).  相似文献   

2.
PbTiO3 and/or BaTiO3 were systematically introduced into Pb(Zn1/2W1/2)O3 and resultant phase developments in terms of perovskite formation were investigated. Ceramic powders were prepared via a B-site precursor route to further assist the perovskite formation. Weak-field dielectric properties of the sintered samples were examined. For Pb(Zn1/2W1/2)O3-rich compositions, multiphase ceramics resulted and formation of monophasic perovskite turned out to be not successful even by the B-site precursor method. Values of the perovskite formation yield and the maximum dielectric constant increased with increasing fractions of the substituent species.  相似文献   

3.
In, Ce and Bi doped Ba(Zn1/3Nb2/3)O3 (BZN) ceramics were prepared by conventional mixed oxide technique. In doping between 0.2 and 4.0 mol% increased the density of BZN at 1300 °C, Ce doping caused a decrease in density at 1250 °C. Levels of Bi2O3 up to 1.0 mol% had negative effect on densification, while high level doping could significantly improve the densification of the specimens. XRD of the samples indicated that In, Ce and Bi doping resulted in single phase formation at all concentrations, except 0.5 mol% Bi. SEM of Bi doped BZN indicated only single phase structure and Ce doping even at 0.2 mol% gave some secondary phases. In and Ce doping increased the dielectric constant from 41 to around 66 at 1 MHz. Bi doping decreased the dielectric constant to about 37 at 0.2 mol%, and then higher doping led to dielectric constant to increase to about 63.  相似文献   

4.
Piezoceramic compositions [Pb(Ni1/3Sb2/3)]0.02-[Pb(Zr1−yTiy)]0.98O3 with y = 0.46-0.50 were synthesized by solid state route to study the effect of Zr/Ti ratio on crystal structure, microstructure, piezoelectric and dielectric properties. Calcination was performed at 1060 °C. The specimens were sintered at 1280 °C for 1 h. X-ray diffraction studies indicate the co-existence of tetragonal and rhombohedral perovskite phases in these compositions. Microstructural analysis showed the dense and uniform microstructure for [Pb(Ni1/3Sb2/3)]0.02-[Pb(Zr0.52Ti0.48)]0.98O3. This composition was resulted in optimum values of properties viz. charge constant (d33 = 301 × 10−12 C/N), voltage constant (g33 = 33.7 × 10−3 V m/N), product of piezoelectric charge constant and voltage constant (d33 × g33 = 10.12 × 10−12 C V m/N2) and coupling factor (kp = 0.63). Results indicated that this material composition could be suitable for power harvesting and sensor applications.  相似文献   

5.
Transparent disordered BMT ceramics were obtained by solid state reaction. Sn4+ ions were incorporated to make the B site of the perovskite structure disordered. The stoichiometric powder mixture with and without Sn doping was calcinated at 1300 °C, respectively and they were both characterized. After dry pressing, the pellets with Sn doping were sintered at 1600 °C in oxygen atmosphere for 4 h. The grain size of the transparent ceramics is around 12 μm. No pores were detected in or among the grains. The inline transmittance of the material is 66% at 580 nm. The refractive index is 2.09 at 1600 nm.  相似文献   

6.
The microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)TiO3 (A=Zr, Sn) ceramics were investigated with regard to substitution of Ba for Mg of A-site. The microwave dielectric properties were correlated with the Ba content. With an increase in Ba content from 0.01 to 0.1, the dielectric constant and the τf value increased, but the Q×f value decreased. The sintered (BaxMg1−x)(Zr0.05Ti0.95)TiO3 (called BxMZT) ceramics had a permittivity in the range of 19.1−20.6, quality factor from 180,000 to 25,000 GHz, and variation in temperature coefficient of resonant frequency from −35 to −39 ppm/°C with increasing composition x. For sintered (BaxMg1−x)(Sn0.05Ti0.95)TiO3 (called BxMST) ceramics, the dielectric constant increased from 19 to 20.5, Q×f value increased from 120,000 to 37,000 (GHz), and the τf value increased from −50 to −3.3 ppm/°C as the x increased from 0.01 to 0.1. When A=Sn and x=0.1, (Ba0.1Mg0.9)(Sn0.05Ti0.95)TiO3 ceramics exhibited dielectric constant of 20.5, Q×f value of 37,000 (GHz), and a near-zero τf value of −3.3 ppm/°C sintered at 1210 °C for 4 h.  相似文献   

7.
CuO-doped Ba(Zr0.05Ti0.95)O3 (BZT) ceramics were prepared using conventional solid state reaction method, and their structure and electrical properties were investigated. It was found that a small amount of CuO could lower the sintering temperature significantly and make their microstructure more densified than pure BZT. The ceramics with 1.2 mol% CuO, sintered at 1250 °C, showed excellent piezoelectric properties with d33~320 pC/N and kp=44%. The sintering temperature was decreased by 150 °C than that for pure BZT ceramics while showing comparable piezoelectric properties. Moreover, the influence of sintering temperature on the optimally 1.2 mol% CuO-doped BZT ceramics was studied. With the temperature change, different patterns of crystal growth were observed in the doped BZT ceramics. When the sintering temperature increased from 1200 °C to 1350 °C, the patterns of normal–abnormal–normal grain growth were changed accordingly.  相似文献   

8.
Nano-crystals of ferroelectric NaNbO3 phase were prepared by hydrothermal method in one step. The influence of temperature, concentration of Nb2O5 and NaOH, and reaction duration on structure and morphology was analyzed. Temperature has a marked effect on phase formation, while concentration of Nb2O5 and NaOH can affect both structure and morphology. Lower ratio of NaOH/Nb2O5 facilitates formation of orthorhombic NaNbO3. Reaction duration only plays an important role in the formation process at lower temperatures. The intermediate phases of sodium niobates may transform into NaNbO3 by prolonging reaction duration or annealing at certain temperature.  相似文献   

9.
The influence of various sintering aids on the microwave dielectric properties and the structure of Nd(Mg0.5Ti0.5)O3 ceramics were investigated systematically. B2O3, Bi2O3, and V2O5 were selected as liquid-phase sintering aids to lower the sintering temperature. The sintered Nd(Mg0.5Ti0.5)O3 ceramics are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microwave dielectric properties. The sintering temperature of Nd(Mg0.5Ti0.5)O3 microwave dielectric ceramics is generally high, about 1500 °C. However, the sintering temperature was significantly lowered about 175 °C from 1500 °C to 1325 °C by incorporating in 10 mol% B2O3 and revealed the optimum microwave dielectric properties of dielectric constant (r) value of 26.2, a quality factor (Q × f) value of 61,307 (at 9.63 GHz), and τf value of −45.5 ppm/°C. NdVO4 secondary phase was observed at 10 mol% V2O5 addition in the sintering temperature range of 1300–1325 °C, which led the degradation in microwave dielectric properties. The microwave dielectric properties as well as grain sizes, grain morphology, and bulk density were greatly dependent on sintering temperature and various sintering aids. In this study, it is found that Nd(Mg0.5Ti0.5)O3 incorporated with 10 mol% B2O3 with lower sintering temperature and excellent dielectric microwave properties may be suggested for application in microwave communication devices. The use of liquid-phase sintering, the liquid formed during firing normally remains as a grain boundary phase on cooling. This grain boundary phase can cause a deterioration of the microwave properties. Therefore, the selection of a suitable sintering aid is extremely important.  相似文献   

10.
(1 − x)Pb(Sn1−yTiy)O3-xPb(Mg1/3Nb2/3)O3 (x = 0.1-0.4, y = 0.45-0.65) ternary system was prepared using two-step columbite precursor method. Phase structure of the synthesized ceramics was studied by using X-ray powder diffraction and the morphotropic phase boundary (MPB) curve of the ternary system was confirmed. The isothermal map of Curie temperature (TC) in the phase diagram was obtained based on the dielectric-temperature measurements. The coercive field EC and internal bias field Ei were found to increase with increasing PT content, while decrease with increasing PMN content. The optimum properties were achieved in the MPB composition 0.8Pb(Sn0.45Ti0.55)O3-0.2Pb(Mg1/3Nb2/3)O3, with dielectric permittivity ?r, piezoelectric coefficient d33, planar electromechanical coupling kp, mechanical quality factor Qm and TC of being on the order of 3040, 530pC/N, 55.5%, 320 and 190 °C, respectively, exhibiting potential usage for high power application.  相似文献   

11.
Domain structures of Ba(Ti1−xSnx)O3 (x = 0, 0.05, 0.1, 0.13) ceramics were observed dynamically under an electric field at various temperatures using a high-resolution charge-coupled-device (CCD) microscope system. The Ba(Ti1−xSnx)O3 ceramics showed a significant difference in domain structure and motion with changing composition: the domain structure became tiny and complex with increasing x , and the domain reorientation was easily induced with increasing and decreasing electric field. The results of the domain observations coincided well with electrical measurement data.  相似文献   

12.
Doped hexagonal BaTiO3 (h-BaTiO3) ceramics have recently been identified as potential candidates for use in microwave dielectric resonators. However, similar to other common microwave ceramics, doped h-BaTiO3 ceramics require a sintering temperature higher than 1400 °C. In this study, the effects of Bi2O3 and Li2CO3 on the densification, microstructural evolution and microwave properties of hexagonal 12R-Ba(Ti0.5Mn0.5)O3 ceramics were examined. Results indicate that Bi2O3 and Li2CO3 are able to effectively reduce the sintering temperature of 12R-Ba(Ti05Mn0.5)O3 ceramics through liquid phase sintering while retaining the hexagonal structure and the microwave dielectric properties. The best results were obtained for the 12R-Ba(Ti0.5Mn0.5)O3 with the additions of 5 wt% Bi2O3 sintered at 1200 °C (?r: 36.0, Qfr: 6779 GHz, and τf: 25.3 ppm/°C), and 5 wt% Li2CO3 sintered at 1200 °C (?r: 28.1, Qfr: 5304 GHz, and τf: 35.3 ppm/°C).  相似文献   

13.
The dielectric properties, lattice parameters, and X-ray and neutron diffraction intensities of solid solutions of BaTiO3 containing Nb or Ta were studied. These solid solutions have a perovskite-type structure with part of the Ti4+ ions replaced by Nb5+ or Ta6+ ions and with some cation vacancies. These solid solutions exhibit a remarkable lowering of the Curie point, but the tetragonal-orthorhombic and the orthorhombic-rhombohedral transition points are raised.  相似文献   

14.
Pb(Co1/3Nb2/3)O3 (PCN) ceramics have been produced by sintering PCN powders synthesized from lead oxide (PbO) and cobalt niobate (CoNb2O6) with an effective method developed for minimizing the level of PbO loss during sintering. Attention has been focused on relationships between sintering conditions, phase formation, density, microstructural development, dielectric and ferroelectric properties of the sintered ceramics. From X-ray diffraction analysis, the optimum sintering temperature for the high purity PCN phase was found at approximately 1050 and 1100 °C. The densities of sintered PCN ceramics increased with increasing sintering temperature. However, it is also observed that at very high temperature the density began to decrease. PCN ceramic sintered at 1050 °C has small grain size with variation in grain shape. There is insignificant change of dielectric properties with sintering temperature. The PE hysteresis loops observed at −70 °C are of slim-loop type with small remanent polarization values, which confirmed relaxor ferroelectric behavior of PCN ceramics.  相似文献   

15.
The effects of Ba(Mg1/3Nb2/3)O3 additives to lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Mg1/3Nb2/3)O3 ceramics have been investigated. XRD patterns, SEM images and Raman spectra have been used to discuss phase structure transitions and microstructure. The dielectric behavior has been also investigated by using the empirical law, the Curie-Weiss law and the spin-glass model. Results show the diffused phase transition behavior to be enhanced by increasing Ba(Mg1/3Nb2/3)O3 addition and the dielectric behavior to be changed to the more short range order of relaxor ferroelectric. Barium and Magnesium cations are suggested to enter into the cation sites and induce the changes of lattice structure, microstructure, compositional fluctuation, cation disorder and correlation of neighboring cluster-sized moments.  相似文献   

16.
It is known that Curie temperature of barium titanate system can be altered by the substitution of dopants into either A- or B-site. Dopants could pinch transition temperature, lower Curie temperature, and raise the rhombohedral–orthorhombic and orthorhombic–tetragonal phase transition close to room temperature. This isovalent substitution could improve the ferroelectric properties of the BaTiO3-based system. In this study, barium zirconate titanate Ba(ZrxTi1−x)O3 (BZT; x = 0, 0.02, 0.05 and 0.08) ceramics were prepared by conventionally mixed-oxide method. The ferroelectric properties of BZT ceramics were investigated. Increasing Zr content in the BaTiO3-based compositions caused a decrease in Curie temperature (Tc). At Tc, the highest relative permittivity of BZT with an addition of 0.08 mol% of Zr was 12,780. The BZT specimens with the additions of 0.05 mol% and 0.08 mol% of Zr presented the remanent polarization at 25 μC/cm2 and 30 μC/cm2, respectively.  相似文献   

17.
Lead-free (1−x)(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3xBiYbO3 [(1−x)BCTZ−xBYO] piezoelectric ceramics in the range of BYO concentrations were prepared by the conventional oxide-mixed method, and the effect of BYO content on their microstructure, crystalline structure, density and electrical properties was investigated. A dense microstructure with large grain was obtained for the ceramics with the addition of BYO. The ceramics with x=0.1% exhibit an optimum electrical behavior of d33~580 pC/N, r~10.9 Ω, kp~56.4%, and tan δ~1.12% when sintered at a low temperature of ~1350 °C. When the measuring electric field is 40 kV/cm, the well-saturated and square-like PE loops for the ceramics were observed with Pr~12.2 μC/cm2 and Ec~1.83 kV/cm.  相似文献   

18.
Effects of Zn substitution for Mg on the crystal structure, lattice vibrations and microwave dielectric properties of Ba(Mg1/3,Ta2/3)O3 (BMT) ceramics were investigated. Raman scattering spectra for Ba([Mg1−xZnx]1/3Ta2/3)O3 (BMZT) ceramics, with x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, were measured at room temperature. The Raman result shows a dominance of 1:2 ordered structure at all Zn substitution contents. All Raman modes shift to lower frequencies with increasing Zn substitution. Higher Qf value correlates well with narrower width of the breathing Raman mode A1g(4) and larger relative intensity of 1:2 long-range-ordered mode Eg(2) in BMZT solid solution. First-principle calculation was performed to investigate the electronic structure of 1:2 ordered BMT and Ba(Zn1/3,Ta2/3)O3 (BZT). Covalent bond between Zn and O in BZT is much stronger than that between Mg and O in BMT due to the Zn 3d orbital. Zn substitution for Mg leads to longer and weaker Ta-O bonds, which may be one reason for the variation of Raman spectroscopy and microwave dielectric properties of BMZT system.  相似文献   

19.
New ternary compositions in the Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3–PbTiO3 (PMN-PYbN-PT) system were prepared using 0.5Pb(Yb1/2Nb1/2)O3-0.5PbTiO3 (PYbNT) and (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (x = 0.26; PMNT26 or x = 0.325; PMNT32.5) powders synthesized via the columbite method. Dense (≥ 96% of theoretical density) ceramics with PMN/PYbN mole ratios of 25/75 (R-25), 50/50 (R-50) and 75/25 (R-75T and R-75R) were fabricated by reactive sintering at 1000 °C for 4 h. Therefore, incorporation of PYbNT to PMNT successfully decreased sintering temperature of PMNT from 1200 °C-1250 °C to 1000 °C. Samples with higher density and perovskite ratio together with lower weight loss possessed higher dielectric and piezoelectric values in each composition. The R-75 samples had remanent polarization (Pr) values of 34-36 μC/cm2 and piezoelectric charge coefficient (d33) of 560 pC/N. The sharp phase transition PMNT as a function of temperature became broader or more diffuse with increasing PYbNT content. However, PYbNT addition to PMNT increased Curie temperature (Tc) from 183 °C (for PMNT32.5) to 220-242 °C (for R-75T and R-75R) to 336 °C (for R-25). Therefore, these ternary compositions can be tailored for various high temperature applications due to the relatively higher Tc with enhanced piezoelectric and dielectric properties as compared to PMNT.  相似文献   

20.
Polycrystalline samples of manganese substituted lead zirconium titanate (PZMT) with general formula Pb(Zr0.65−xMnxTi0.35)O3 ceramics have been synthesised by high temperature solid state reaction technique. X-ray diffraction (XRD) patterns were recorded at room temperature to study the crystal structure employing Rietveld technique. All the patterns could be refined to R3c space group with rhombohedral symmetry. Bond lengths and angles have been calculated from refined parameters. Microstructural properties of the materials were analysed by scanning electron microscope (SEM) and compositional analysis were carried out by energy dispersive spectrum (EDS) measurements. All the materials exhibit ferroelectric to paraelectric transition. The Curie temperature (Tc) increases with the Mn concentration. We have observed that dielectric constant decreases and AC conductivity increases with the frequency. The correlation between lattice parameters and Tc for the present samples has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号