共查询到18条相似文献,搜索用时 78 毫秒
1.
介绍了温度变化对红外光学系统的影响.仅用硅和锗两种常用红外材料,设计了三片折射式消热差红外光学系统.设计结果表明,在-40~+60℃温度范围内,具有良好的消热差作用,成像质量接近衍射限,且具有结构简单、体积小、成本低等优点,可应用于军事或空间红外光学系统. 相似文献
2.
分析了温度对红外光学系统结构参数的影响,计算了温度变化引起系统的离焦量和调制传递函数,给出了红外光学系统消热差设计的基本原理;利用ZEMAX光学设计分析软件,结合实际的长波红外光学系统,分析其在20℃,-40℃和60℃时的成像质量。分析结果表明,该系统在常温时成像质量接近衍射极限,系统全视场调制传递函数在特征频率20 lp/mm处达0.6,87.6%的能量集中在探测器的一个像元内,成像质量优良;但是当温度在-40~60℃变化时,系统成像质量急剧恶化,不再满足使用要求,在分析的基础上采用折衍射混合光学被动式消热差技术中对其进行进一步设计,经消热差设计后该红外光学系统的成像质量得到了极大的改善,全视场调制传递函数在特征频率20 lp/mm处达0.55以上,且能量分布集中,满足红外探测系统的使用要求。 相似文献
3.
温度变化对透镜成像效果的影响称为热差.为了使透镜在一定温度范围内具有稳定的成像质量,通常需要通过采取某些补偿措施来实现消热差.归一化系数是消热差数学模型的重要组成部分.讨论了归一化系数的概念及其在消热差技术中的应用情况.基于国内相关文献资料,介绍了红外光学系统消热差技术的发展思路与动态. 相似文献
4.
实现消热差和消色差的折衍混合红外光学系统 总被引:6,自引:1,他引:6
论述了利用衍射光学元件的环境温度特性实现光学系统消热差的原理和设计方法,给出了8-12μm波段内、焦距123mm、相对口径1/2.5在20-50℃温度范围内实现消热差和消色差的折衍混合红外光学系统的设计和评价结果;叙述了用NANOFORM250型金刚石微表面发生器在Ge单晶平面基体上加上衍射元件的主要过程和测试结果,最后给出了在不同温度下用英国Ealing传递函数仪测试系统性能的测试结果。 相似文献
5.
分析了温度变化对红外光学系统结构参数的影响,给出了红外光学系统消热差设计应满足的条件,讨论了衍射光学元件的温度特性,并将其引入到红外光学系统的消热差设计中.利用ZEMAX软件,设计了一套由锗和硫化锌组合的三片式折衍混合长波红外光学系统,其工作波段为8~12 m,视场为10.2,焦距为45 mm,F/#为1.5,总长为70 mm.设计结果表明,该镜头在-40~60 ℃温度范围内成像质量接近衍射极限,系统全视场调制传递函数在特征频率20 lp/mm处高于0.6, 87%的能量集中在探测器的一个像元内,实现了消热差设计.该系统具有结构紧凑、体积小、质量轻等优点,适用于军事或空间红外系统. 相似文献
6.
为了提高大口径离轴反射式光学系统的环境适应性,设计了被动消热差的大口径离轴光学系统。首先通过技术比较,确定了机械被动式的补偿路线。随后通过光学和机械材料的选取、光机结构的优化和补偿结构的计算,利用简单机械结构实现了系统的无热化。最后对系统的设计结果进行了仿真,分析了系统在-40 ℃、20 ℃和+55 ℃的光学传递函数。分析结果表明,利用该方法实现的大口径离轴光学系统完全满足温度补偿的要求,同时具有体积小、重量轻、易于实现且补偿精度高等优点。 相似文献
7.
8.
为提高红外光学系统的目标探测识别能力,增强其温度适应能力,在分析红外材料在中波和长波红外波段的色差与热差特性的基础上,根据系统光焦度分配、双波段轴向消色差和双波段消热差等要求,利用红外色差图合理选择光学材料组合,设计了一款中波和长波红外双波段消热差系统,系统采用非制冷探测器,工作波段为3~5 m和8~12 m,由4片透镜组成,焦距为50 mm,相对空间为1:1.25,全视场角为14,总长67.9 mm。设计结果表明:在温度范围-50~60 ℃范围内,在空间频率为17 lp/mm处,系统在中波和长波波段的MTF值均大于0.4,表明系统有较强的温度适应性。 相似文献
9.
介绍了一种远距型红外消热差物镜的设计方法。首先建立了由多个光组构成的组合光学系统的消热差模型,将其与远距型物镜模型相结合,得到了光焦度分配方程组,再根据系统要求的远距比和所选择的光学材料组合,获得初始的光焦度分配,然后利用计算机辅助设计进行像差校正。该方法准确、实用。作为应用实例,利用ZEMAX软件分别设计了中波红外和长波红外光学系统,它们的焦距均为100 mm,F数为2.0,远距比达到0.8。环境温度分析结果表明:在-40 ~60 ℃范围内,成像质量稳定,调制传递函数(MTF)接近衍射极限。实际设计结果与理论计算结果相吻合。 相似文献
10.
一种高分辨率短波红外宽温度范围被动消热差光学系统 总被引:1,自引:0,他引:1
介绍了一种大视场短波红外光学系统消热差设计。系统工作波段为0.9~1.7μm,分辨率为640pixel×512pixel,光学系统总长55mm。设计结果表明,在空间频率为20lp/mm处,系统工作温度在-40℃~60℃环境下,各个温度下的系统调制传递函数(MTF)值均大于0.6。系统具有高像质、工作温度范围宽、结构紧凑、重量轻等优点。 相似文献
11.
12.
红外光学系统被动式无热化设计方法 总被引:4,自引:0,他引:4
红外光学系统在一定温度条件下会由于温度变化导致系统成像质量变差.利用光学材料热特性之间存在的差异,提出一种光学被动式无热化设计方法,分析了透镜组的消像差方程组并进行求解,讨论了不同透镜材料消热差和消色差的实现过程,利用不同材料合理匹配与合理分配光焦度实现热补偿.针对相同技术指标,设计了两个红外双波段光学系统并对两种系统性能进行比较,结果表明,采用热补偿措施的红外系统在-40~+60℃温度范围内弥散圆尺寸变化不大,焦距变化量小于系统最小焦深,成像质量接近衍射极限,不同温度下系统焦距的变化不影响成像质量和性能. 相似文献
13.
14.
15.
16.
由于温度变化会导致红外光学系统的成像质量变坏,因此,对于工作环境温度在-45~60℃之间的长波红外折射光学系统来说,无热化设计成为光学系统设计的难点和关键.为研究不同的无热化补偿方式的特点,分别设计了基于光学被动式无热化补偿和基于机械被动式无热化补偿的两种长波红外非制冷光学系统,对比分析了两种光学系统的优缺点,给出了选择无热化补偿方法的基本原则. 相似文献
17.
红外光学系统无热化设计研究 总被引:1,自引:0,他引:1
分析了温度对红外光学系统的影响。军用红外光学系统往往工作在温度变化较大的环境中,因此必须采取有效的温度补偿措施以减少离焦。介绍了红外光学系统无热化设计的方法及原理。根据小型红外光学系统的设计参数,提出了光学被动式无热化设计思路。试验结果表明,光学系统在0~60℃范围内可保持良好的成像效果。 相似文献
18.
为提高机载红外光学系统的环境适应性,保证红外系统在机载动态环境中能够稳定成像,提出一种无热化加权温度补偿方法,根据每个光学元件和间隔温度变化对系统成像影响程度的不同赋予不同的权重,建立在不均匀变化温度场中光学系统的加权温度补偿模型.利用光学设计软件仿真分析,工作温度在-50~+60℃范围内仿真误差<0.5%.建立了无热化光学系统的测试平台,对无热化加权温度补偿方法仿真分析结果进行实验测试.研究结果表明,加权温度补偿模型实用性强、精度高.在机载环境温度范围内,各项误差能够控制在1.5%,满足机载环境复杂红外光学系统的被动无热化的要求. 相似文献