首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag对Al-Cu-Mg合金组织与性能的影响   总被引:1,自引:0,他引:1  
通过硬度测试、拉伸测试和透射电镜(TEM)分析,研究了Ag对Al-Cu-Mg合金室温力学性能与显微组织的影响.结果表明,Ag的添加加速了合金的时效过程,使合金的室温强度得到明显提高.在165℃峰时效时,含Ag的合金析出相是与基体共格的片状Ω相及少量θ'相组成,未含Ag的合金析出相主要是θ'相.Ag促进合金强化的原因在于Ω相具有很好的沉淀强化作用,在长时间时效时具有较好的抗粗化能力.  相似文献   

2.
微量Ag对Al-Cu-Mg-Mn合金时效析出及组织热稳定性的影响   总被引:1,自引:0,他引:1  
采用差热分析(DSC)及透射电镜(TEM),研究了微量Ag对Al-5.3Cu-0.8Mg-0.5Mn-0.5(Zr Ti)合金时效析出过程及显微组织热稳定性的影响.结果表明,添加微量Ag可改变合金的时效过程,提高合金的时效硬化能力.含0.6%Ag的Al-Cu-Mg-Mn合金在185 ℃峰时效时的强化析出相由Ω相与少量θ′相组成,Ω相呈薄片状,该相{001}Ω面与基体Al的{111}α面共格,位向关系为(001)Ω//(111)α、[010]Ω//[101-]及[100]Ω//[12-1]α.当温度低于300 ℃时,Ω相比θ′相具有更好的热稳定性;而在300 ℃经长时间处理时,Ω相变得不稳定并最终转变成θ′相.  相似文献   

3.
利用扫描电镜(SEM+EBSD)、透射电镜(TEM)、硬度测试以及室温拉伸实验研究了喷射沉积过共晶AlSiCuMg合金的时效组织演变规律及力学性能。结果表明:随时效时间的延长,喷射沉积AlSiCuMg合金的硬度先增加后降低;随着时效温度的升高,合金硬度达到峰值所需时间分别为24 h (170℃)、2 h(185℃)和0.5 h (200℃)。合金经185℃时效0.5 h后,在位错处可观察到非均匀析出的细小针状θ″相。在(185℃, 2 h)峰时效状态下,析出相包含细针状θ″相和点状Q′相,同时存在粗针状θ′相。峰时效硬度约为91HRB,比挤压态提高了近72%。合金经185℃时效28 h后,θ′相体积分数明显增加。合金经185℃时效48 h后,析出相演变为粗大的板条状θ相和方块状Q相;过剩Si相开始析出,同时在与入射轴垂直的晶面上观察到包围Si相的粗大盘片状富Cu相。合金经185℃时效56 h后,θ相和Q相演变为粗大椭球状。合金的硬度下降至约80HRB。喷射沉积AlSiCuMg合金的时效析出惯序为:过饱和固溶体→GP区→θ″+Q′→θ′+Q′→θ+Si+Q′→θ+Si+Q。合金的峰值时效...  相似文献   

4.
采用金相显微分析技术、布氏硬度、XRD分析、室温与高温拉伸性能测试等方法,研究了Ag对Al-5.3Cu-0.8Mg合金铸态组织与时效硬化行为的影响。研究表明:Ag对合金铸态组织有细化作用,随着Ag含量的增加,枝晶得到细化;Ag添加缩短了合金的峰时效时间,其原因在于Ag原子提高了合金析出相的形核速率,进而加速了析出相的形成;随着Ag含量的增加,合金的硬度先增加后降低,含0.8%Ag的合金峰时效硬度最大;适量的Ag可以促进合金中Ω相的形成,过量的Ag将会抑制Ω相的形成;随着Ag含量的增加,合金的强度和热稳定性先升高后降低,当Ag含量为0.8%时,其强度和热稳定性均达到峰值;Ag提高合金强度与热稳定性的原因在于析出了热稳定性和强化作用比θ'、S'相更强的Ω相。  相似文献   

5.
Ag,Mg合金化对Al-Cu-Li合金时效特性和显微组织的影响   总被引:1,自引:0,他引:1  
通过力学性能测试和显微组织观察研究微量Ag和Mg对Al-3.5 Cu-1.0Li合金时效特性和显微组织的影响.结果表明:在175℃时效时,单独加Ag不影响合金的时效硬化效果,析出物形貌与Al-Cu-Li合金相似,峰值时效状态下均析出较粗大的T1相和θ'相;单独加Mg加快Al-Cu-Li合金的时效响应,提高合金的时效硬化效果,时效时析出GP区,θ'相和T1相;Ag和Mg同时添加的2050合金中,T1相的析出速度加快,析出密度增大,并以T1相为主要强化相,时效强化效果最大.Ag,Mg添加对合金的不同影响可通过溶质原子与空位、溶质原子与溶质原子之间的相互作用来解释.  相似文献   

6.
研究时效前预拉伸对Al-Cu-Mg-Ag合金析出相和力学性能的影响。结果表明:165℃时效前的预拉伸可提高合金的峰值硬度及强度,延长峰值时效的时间;合金的主要强化相是Ω相和θ′相,预拉伸引入的位错抑制了Ω相的析出与长大,细化Ω相的尺寸,同时促进θ′相的析出;时效前未经变形时,合金出现峰值的时间是10h,对应的σb为492MPa;时效前经4%预拉伸变形后,合金出现峰值的时间是18h,对应的σb为508MPa。  相似文献   

7.
采用硬度、电导率、拉伸性能、撕裂性能等性能测试和差示扫描量热(DSC)、透射电镜(TEM)等分析方法研究单级时效和多级断续时效对高Cu/Mg比Al-Cu-Mg-Ag-Zr合金组织和性能的影响.结果表明与T6态合金相比,多级断续时效处理在保持合金强度、硬度和电导率同时,显著提高合金的断裂韧性;160℃单级时效过程中,Ω和θ′相同时析出;断续时效第一级和第三级时效的主要析出相与单级时效的类似,第二级低温时效过程中,θ′相明显析出,未出现明显的Ω相析出特征.  相似文献   

8.
利用拉伸力学性能测试和透射电镜等研究了高纯Al-Cu-Mg-Ag合金在长时间时效过程中的时效析出行为。结果表明:实验用高纯Al-Cu-Mg-Ag合金板材具有较好的热稳定性和塑性,经185℃时效50h后合金的强度较峰值状态仅下降6%~7%,同时伸长率δ10保持在8%以上;Ω相是高纯Al-Cu-Mg-Ag合金的主要强化相,当合金处于峰值状态时,Ω相与基体之间会产生较大的错配应变,并在Ω相的细小片层处产生位错,为随后二次析出相θ′的析出提供有利的形核位置;延长时效时间将促进尺寸较大的Ω相和大部分θ′相(包括先析出相和二次析出相)向平衡相θ转变,但Ω→θ的转变远比θ′→θ的转变缓慢。  相似文献   

9.
Al-Cu-Mg-(Ag)合金中时效析出相的析出及生长动力学   总被引:7,自引:1,他引:7  
采用透射电子显微镜(TEM)研究了Ag在时效过程中对析出相形核及生长的影响,并发展了析出相生长的动力学模型。模型指出:在时效过程中,Al-Cu-Mg合金中析出的θ′相通过台阶机制生长而发生共格失稳,转化成球状的θ相而导致强度显著下降;Al-Cu-Mg-Ag合金中的Ω相由于在界面被Mg和Ag原子覆盖,降低了Ω相的生长速度;同时,Mg和Ag原子在析出相界面的存在降低了晶格畸变能,使得Ω相能够保持片状而不发生共格失稳,高温下具有较高的强度。力学实验及显微组织分析表明:分别均匀分布在铝基体(001)和(111)面上共存的θ′和Ω(成分为Al2Cu)沉淀相对含Ag合金起着强化作用。  相似文献   

10.
采用金相观察、扫描电镜(SEM)、透射电镜(TEM)及硬度测试,研究了高含量Si的添加对铸态Al-5.3Cu-0.8Mg-0.5Mn-0.6Ag(wt.%)合金组织与时效硬化过程的影响。结果显示,高含量Si的添加降低了合金的时效硬度,延长了合金在185℃时的峰时效时间。TEM显示,Si的添加抑制了基体合金中Ω相的析出,含6.0%Si的Al-5.3Cu-0.8Mg-0.5Mn-0.6Ag合金的强化相由θ′相与σ相组成。  相似文献   

11.
用挤压铸造方法制备Mullite/Al—Cu复合材料及其基体合金。用硬度测试(HB)、差示扫描量热仪(DSC)和透射电镜(TEM)等手段,研究了温度和溶质原子浓度对复合材料及其基体合金时效行为的影响。结果表明:复合材料和基体合金具有相似的时效硬化曲线及相同的时效析出序列,随时效温度的升高,峰值硬度降低、析出过程加快;溶质浓度升高,峰值硬度升高、析出过程同样得到加快;纤维除了能明显提高Al—Cu合金的时效硬度外,还能加速其时效析出过程,但对GP区的形成具有明显的抑制作用,而对θ相的析出影响不大。  相似文献   

12.
采用硬度测试和差示扫描量热法研究时效前不同冷轧变形量对2519A铝合金析出动力学的影响。根据DSC曲线,采用单升温速率法计算合金的激活能;采用透射电子显微镜观察冷轧和峰时效状态下合金的微观组织。结果表明:随着冷轧变形量从7%增加至40%,合金的时效硬化能力降低,激活能升高。当冷轧变形量为15%时,在冷轧态合金组织中观察到密度不均匀的位错组织,在峰时效状态合金组织中观察到不均匀分布的θ′相。不均匀分布的θ′相可能是造成合金时效硬化能力降低和激活能升高的原因。  相似文献   

13.
Ag对Al-Cu-Mg-Mn-(Zr, Ti)合金高温性能的影响   总被引:2,自引:2,他引:2  
采用拉伸测试与透射电镜(TEM)分析,研究了微量Ag对Al-5.3Cu-0.8Mg-0.5Mn-0.5(Zr+Ti)(质量分数)合金高温性能的影响。结果显示,Ag的微合金化改变了合金的时效过程,使合金的室温强度和高温性能得到明显提高。含Ag的合金在185℃峰时效时的强化析出相,由与基体共格的片状Ω相及少量θ′相组成。微量Ag促进合金强化的原因主要在于力相的沉淀硬化;其高强耐热性能则是因Ω相比θ′相具有更好的热稳定性。  相似文献   

14.
外加应力对Al-Cu-Mg-Ag合金时效析出行为的影响   总被引:1,自引:1,他引:0  
采用维氏硬度、光学显微镜、双臂电桥电阻及透射电子显微镜等手段,研究普通时效与应力时效时,外加应力对Al-Cu-Mg-Ag合金时效析出行为的影响。结果表明:外加应力会降低Al-Cu-Mg-Ag合金的时效硬化速率,减小峰值硬度和延长欠时效时间;外加应力能够促进Al-Cu-Mg-Ag合金中θ′相的析出,抑制Ω相的析出和长大;在外加应力的影响下,Ω相产生应力位向效应,且应力位向效应的产生主要在Ω相的形核阶段形成。  相似文献   

15.
研究了Al-5.2Cu-0.4Mg-1.02Ag合金在不同时效制度下的力学性能和显微组织,并详细分析了合金的主要析出相Ω的形核与粗化,同时提出了浓度台阶粗化机制.结果表明:合金的主要强化相是Ω相和θ'相.欠时效时出现了大量细小的Ω相和少量的θ'相;峰时效时Ω相和θ'相的体积分数大大增加,且Ω相与基体呈半共格关系;过时效时出现了球状的平衡θ相,Ω相略为长大,而θ'相的长度和厚度明显增大.Mg/Ag原子簇是时效初期Ω相的形核核心;Mg,Ag和Cu的浓度差异引起的台阶迁移是Ω相粗化的驱动力.由于Mg和Ag原子在Ω相与基体界面存在时降低了晶格的畸变能,使得Cu原子向Ω相迁移的速率受到限制,因此Ω相能够在长时间下保持片状而不发生共格失稳.  相似文献   

16.
Al-3.6Cu-1.6Mg-0.1Zr铝合金的时效析出与硬化机理分析   总被引:2,自引:2,他引:0  
通过硬度检测、DSC热分析和透射电镜(TEM)观察,研究了人工时效制度对Al-3.6Cu-1.6Mg-0.1Zr合金组织和性能的影响。结果表明,在160、175和190℃进行人工时效时,对应峰值硬度的时效时间分别为32、24和16 h,硬度峰值随时效温度的提高而下降。在160、175℃时效后,时效硬化曲线呈现明显的双阶段硬化特征。研究表明,第一阶段的硬化主要是由于GPB区的形成;第二阶段的硬化可归结为S'相的析出。  相似文献   

17.
采用硬度测试、拉伸性能测试、DSC分析和透射电镜(TEM)等方法研究不同时效制度对2A97铝锂合金组织和性能的影响。结果表明:采用165℃人工时效时,峰值强度最高,但其塑性也最差,且达到峰值的时间长达60 h;200℃人工时效时,达到峰值的时间缩短为6 h,而其峰值强度和塑性均很差;(200℃,6 h)十(165℃,6 h)双级时效优化后,可获得比200℃峰时效更高的强度,其抗拉强度为545 MPa,只比165℃峰时效强度低11 MPa,伸长率却提高至7.1%,且时效时间比165℃峰时效时缩短了48 h。2A97铝锂合金峰时效状态下的析出相有T_1(A1_2CuLi)相、θ′相和一定量的σ(Al_5Cu_6Mg_2)相。根据不同升温速率下的DSC曲线,采用Kissinger法求得T_1相的析出激活能为75.9 kJ/mol。综合分析可知,采用(200℃,6 h)+(165℃,6 h)双级时效可以得到比单级时效更加优异的综合性能。  相似文献   

18.
肖代红  黄伯云 《铸造》2007,56(11):1200-1202
通过熔炼铸造法制备了一系列含Si的Al-Cu-Mg-Ag合金,采用金相观察、扫描电镜(SEM)、透射电镜(TEM)及硬度测试,研究了Si的添加对铸态合金的显微组织与时效过程影响。结果表明,高含量Si的添加降低了铸态合金的时效硬度与高温耐热性能,延长了铸态合金在185℃时的峰时效时间,完全抑制了基体合金中强化相-Ω相的析出。含6.0%Si的Al-5.3Cu-0.8Mg-0.6Ag合金的强化相主要由θ′相及少量σ相(Al5Cu6Mg2)组成。  相似文献   

19.
通过铸锭冶金及形变热处理,制备了不同Mg含量的Al-Cu-Mn-Ag合金。采用拉伸测试、差热分析(DSC)、扫描电镜(SEM)及透射电镜(TEM)研究了Mg含量对合金显微组织与力学性能的影响。结果显示,添加微量Mg,改变了基体合金的时效硬化过程与析出相种类。185℃峰时效时,Al-4.45Cu-0.49Mn-0.58Ag-0.82Mg合金的主要强化相由片状Ω相和少量θ'相组成。增加Mg的含量,能降低Ω相的尺寸,提高其拉伸性能。  相似文献   

20.
In对Al-3.5Cu合金析出过程的影响   总被引:1,自引:0,他引:1  
利用透射电镜(TEM),差示扫描量热仪(DSC)等方法对Al-3.5Cu和Al-3.5Cu-0.5In(质量分数,%)合金中θ′相的生成及粗化行为进行对比研究。在175℃时效时In的添加显著地促进了合金的时效响应,时效峰值硬度提高了约200MPa。TEM观察结果显示富铟(In′)粒子在时效早期均匀析出,为θ′相的析出提供了非均匀形核位置;且在θ′相宽面发现了位于其片状顶角的In′粒子;时效后期含In合金中θ′相粗化速率明显小于无In合金。时效前增加6%预变形后两种合金时效响应及效果差别不大,证实T6状态In主要是通过淬火空位团簇,从而促进θ′相析出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号