首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对铁品位较低的选铁尾矿和钛精矿,探索了直接还原-磁选回收铁的工艺。综合考察了配碳量、焙烧温度、保温时间和冷却方式对直接还原金属化率的影响,找出了实验最优指标。通过XRD和化学分析讨论了不同焙烧温度下还原过程中物相的变化。结果表明:选铁尾矿中二价铁主要存在的物相(Fe,Mg)(Ti,Fe)O3在1300℃下较充分的被还原为金属铁。钛精矿中三价铁主要存在的物相Fe2TiO5在1300℃下较充分的还原为金属铁。在配碳量为6.29%,焙烧温度1300℃,保温时间1.0 h的最优条件下,选铁尾矿铁回收率达到80%,铁品位58%。在配碳量为10.36%,焙烧温度1300℃,保温时间1 h条件下,钛精矿铁回收率达到95%,铁品位78%。  相似文献   

2.
锌浸渣还原焙烧-磁选回收铁   总被引:2,自引:0,他引:2  
在查明锌浸渣工艺矿物学的基础上,采用还原焙烧将铁酸锌分解为氧化锌和磁性氧化铁,再通过磁选的方法回收铁,达到锌、铁分离的目的。实验考查了焙烧温度、焙烧时间、还原剂用量对铁酸锌分解率、铁回收率和铁品位的影响。结果表明:在焙烧温度为950℃、焙烧时间为1 h及还原剂添加量为10%和5%的条件下,铁酸锌分解率达到72.05%,铁回收率可达到91.79%,精矿中铁的品位为50%左右。焙烧及磁选过程中颗粒的团聚包裹是铁精矿品位不高的主要原因。  相似文献   

3.
磁选厂尾矿回收二氧化钛的研究   总被引:1,自引:0,他引:1  
通过对哈密某钛铁矿选厂-段磁选尾矿性质研究和镜下鉴定,尾矿中二氧化钛的品位为17.87%,钛呈单体和连生体存在,试验矿样取自某磁选厂的一段磁选尾矿,用螺旋溜槽、强磁丢尾,分别进行了粗选试验,二种方法均能使钛得到富集,确定采用强磁丢尾粗选。浮选精选流程富集钛,实验结果表明,可得到品位为47.13%,产率可达19.14%。  相似文献   

4.
采用自行设计的非标管式气氛炉对低品位赤铁矿在中低温下进行预还原,然后在弱磁场下进行磁选.实验结果表明,在还原温度为800℃、还原粒度小于100 μm、还原时间30 min、磁选粒度为30 μm、磁选强度为150 mT时,经过二次磁选可获得品位61.13%、回收率76.28%的铁精矿.  相似文献   

5.
根据锡精矿的特点和沸腾炉的特性,阐述了锡精矿在沸腾炉焙烧中的应用,并对结构工艺参数与焙烧过程进行了探讨.  相似文献   

6.
高铁铝土矿中温金属化焙烧-磁选工艺试验研究   总被引:1,自引:0,他引:1  
针对山西保德高铁一水硬铝石型铝土矿的特性,对其进行中温金属化焙烧-磁选工艺试验研究。通过大量试验,研究了焙烧温度、焙烧时间、焙烧加炭量以及磨矿细度和磁场强度对结果的影响。该工艺与高温冶炼工艺相比大大降低了能耗,同时综合利用了高铁铝土矿中的铁和铝,取到了理想的结果。  相似文献   

7.
针对内蒙古某铁锡矿选厂同步尾矿的特性,根据选矿试验的成果,提出了砂泥分选、集中脱杂、简化粗选及强化精选的新工艺,并对设备选型进行优化比较。生产实践表明,该尾矿回收工艺,可产出含锡35%~40%,回收率15%的锡精矿,含锡4%~5%,回收率10%的锡富中矿,基本达到了设计要求。  相似文献   

8.
含铁锡精矿经磁化焙烧,用干式弱磁选进行锡铁分离,分别获得高级锡精矿和富中矿,从而简化冶炼工艺,提高锡回收率,降低生产成本。  相似文献   

9.
某铁矿尾矿含有较多的黄铁矿和磁铁矿,针对该尾矿中铁矿物和黄铁矿的特性,采用重选先抛去大部分尾矿、重选粗精矿磨矿后浮硫,浮硫尾矿再回收铁的选别工艺,在原矿含硫7.40%、含铁17.91%时,取得了硫精矿品位42.20%、回收率91.93%,铁精矿品位61.42%、回收率达30.42%的指标。  相似文献   

10.
选择性还原-磁选回收镍渣中的有价金属   总被引:2,自引:0,他引:2  
采用选择性还原-磁选工艺富集某镍渣中的镍、铜,通过控制还原过程参数实现选择性还原。结果表明:添加熔剂并适当提高渣料的碱度(CaO与SiO2质量比)有助于镍、铜的富集;对碱度0.15、还原温度1200℃、还原时间20 min、内配煤量5%(质量分数)的优化条件下得到的还原样品,通过磨矿-磁选获得镍、铜、铁品位分别为3.25%、1.20%、75.26%的精矿,镍、铜、铁的回收率分别为82.20%、80.00%、42.17%,实现了镍、铜相对于铁的选择性富集;选择性还原-磁选没有显著降低S、P的含量,两者在工艺过程中的行为需要进一步研究。  相似文献   

11.
玻利维亚多金属锡尾矿含Cu(0.86%)、WO 3(0.64%)和Sn(0.26%),铜矿物以硅孔雀石为主,部分铜矿物与钨、锡矿物呈固溶体形式产出,钨以黑钨矿为主,锡以锡石为主。采用氯化离析法使铜的矿相发生转变,而钨、锡的矿相未发生转变,从而将铜矿物与钨、锡矿物分离。经过氯化离析?浮选?强磁选?重选选冶工艺综合回收铜、钨、锡条件试验得到以下优化工艺参数:当离析温度为900℃、离析时间为45 min、氯化钙用量为3%、焦炭用量为3%时,一段磨矿细度<74μm的占95%;强磁选磁场强度H=1.0T时,二段磨矿细度<38μm的占95%。在此条件下,可分别得到铜品位为25.04%、铜回收率为83.19%的铜精矿,WO 3品位为60.22%、钨回收率为64.26%的钨精矿,锡品位为40.11%、锡回收率为65.69%的锡精矿,实现了玻利维亚锡尾矿中有价金属铜、钨、锡的综合回收利用。  相似文献   

12.
A technology for suspension magnetization roasting?magnetic separation was proposed to separate iron minerals for recovery. The optimum parameters were as follows: a roasting temperature of 650 °C, a roasting time of 20 min, a CO concentration of 20%, and particles with a size less than 37 μm accounting for 67.14% of the roasted product. The total iron content and iron recovery of the magnetic concentrate were 56.71% and 90.50%, respectively. The phase transformation, magnetic transition, and microstructure evolution were systematically characterized through iron chemical phase analysis, X-ray diffraction, vibrating sample magnetometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results demonstrated the transformation of hematite to magnetite, with the iron content in magnetite increasing from 0.41% in the raw ore to 91.47% in the roasted product.  相似文献   

13.
Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and Al, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 °C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.  相似文献   

14.
Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 °C, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to Fe2+ in the reaction solution 1.9–2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.  相似文献   

15.
对氰化尾渣的焙烧预处理及其对有价金属综合回收的影响进行了研究。结果表明:当焙烧温度为750℃、焙烧时间为1.25h、还原剂添加量为6%时,铁的磁化率为86.27%,金的浸出率达到46.14%。结合矿物构造与赤铁矿磁化焙烧原理,探讨了焙烧对金浸出影响的机理,认为赤铁矿磁化焙烧后解离出的包裹金,是提高金浸出率的主要来源。  相似文献   

16.
山东某含金磁黄铁矿原矿金品位1.60 g/t,硫品位1.86%,属含金硫铁矿。矿石性质研究结果表明,部分以磁黄铁矿为载体的金,矿物含量为0.96%,金品位8.25 g/t,原矿金分配率5.25%。生产流程对以磁黄铁矿为载体的金矿物的回收水平仍有提高空间。为了解决这一问题,开展了从生产原矿和生产尾矿中回收以磁黄铁矿为载体的金的对比试验,结果表明,磁选不宜用于原矿、重选不宜用于尾矿中载金磁黄铁矿的回收;尾矿磁选流程可以实现含金磁黄铁矿的有效富集,最终选择全粒级磁选工艺流程,获得了金品位1.52 g/t,硫品位2.87%的含金磁黄铁矿。尾矿金、硫回收率分别为52.09%、62.93%,对原矿回收率分别为12.27%、18.56%,实现了以磁黄铁矿为载体的金矿物的综合利用。  相似文献   

17.
The feasibility and technologies of comprehensive recovery of tin, zinc, arsenic and iron from the complex iron ores by selective chlorination roasting were studied by thermodynamic analysis and roasting experiments. Investigation shows that the product pellets with the compression strength of 2 625 N/P, the tumble index of 97. 26%, the abrasion index of 1. 35%, tin, arsenic and zinc residue of 0. 043%, 0. 046% and 0.058% respectively can be achieved if bailing a concentrate containing 0.39 % tin, 0.40% arsenic and 0.28% with addition of 8% coke breeze and 0. 5% CaCl2 and roasting the pellets at 1 060 - 1 080℃ for 40 min. The volatilization of tin, arsenic and zinc is 91.75 %, 93.42 % and 81.12 % respectively. The performances of the product pellets are able to meet the requirements of blast furnace ironmaking.  相似文献   

18.
提出采用"深度还原-磁选"工艺从红土镍矿中富集镍和铁。结果表明,在还原温度1275℃、还原时间50 min、渣相碱度1.0、配碳系数2.5和磁场强度72 kA/m的条件下,可得到镍品位为6.96%、回收率为94.06%和铁品位为34.74%、回收率为80.44%的镍铁精矿产品。分析表明,还原温度和时间影响深度还原发生的可能性及反应进度,渣相碱度影响炉料中渣的组成及镍铁元素从基体中溢出富集形成镍铁颗粒的速度,深度还原反应过程中镍铁颗粒生成、聚集并逐渐长大,经磁选后可有效促进镍铁矿物与脉石矿物分离。  相似文献   

19.
The magnetism of pentlandite surface was enhanced through the selective precipitation of micro-fine magnetite fractions on pentlandite surfaces. This was achieved through adjustment of slurry pH and addition of surfactants. The results showed that at pH 8.8 with the addition of 100 g/t sodium hexametaphosphate, 4.5 L/t oleic acid, and 4.5 L/t kerosene, significant amount of fine magnetite particles adhered to the pentlandite surface, while trace amount of coating was found on serpentine surfaces. Thus, the magnetism of pentlandite was enhanced and pentlandite was well separated from serpentine by magnetic separation under the magnetic field intensity of 200 kA/m. Scanning electron microscopy (SEM) and zeta potential measurement were performed to characterize changes of mineral surface properties. Calculations of the extended Derjaguin–Landau–Verwey–Ocerbeek (EDLVO) theory indicated that, in the presence of surfactants the total interaction energy between magnetite and pentlandite became stronger than that between magnetite and serpentine. This enabled the selective adhesion of magnetite particles to pentlandite surfaces, thereby enhancing its magnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号